
Tuple Switching Network – When Slower May Be Better

Justin Y. Shi, Moussa Taifi, Abdallah Khreishah, and Jie Wu

Department of Computer& Information Sciences
Temple University

Philadelphia, PA 19122
{shi,moussa.taifi,akhreish,jiewu}@temple.edu

Abstract

This paper reports an application dependent network designfor extreme scale high performance
computing (HPC) applications. Traditional scalable network designs focus on fast point-to-point
transmission of generic data packets. The proposed networkfocuses on the sustainability of high
performance computing applications by statistical multiplexing of semantic data objects. For
HPC applications using data-driven parallel processing, atuple is a semantic object. We report
the design and implementation of a tuple switching network for data parallel HPC applications in
order to gain performance and reliability at the same time when adding computing and commu-
nication resources. We describe a sustainability model anda simple computational experiment
to demonstrate extreme scale application’s sustainability with decreasing system mean time be-
tween failures (MTBF). Assuming three times slowdown of statistical multiplexing and 35%
time loss per checkpoint, a two-tier tuple switching framework would produce sustained perfor-
mance and energy savings for extreme scale HPC application using more than 1024 processors
or less than 6 hour MTBF. Higher processor counts or higher checkpoint overheads accelerate
the benefits.

Keywords:
Application dependent networking, Sustainable high performance computing.

1. Introduction

Traditional scalable network designs focus on the fast transfer of generic data packets. In
theory, packet switched data networks are sustainable and scalable since the packet transmission
performance and reliability improve as we add networking components. Unfortunately, higher
level applications rely on application dependent communicating objects for their tasks. Except
for applications that can be easily partitioned into independent parallel tasks [1], the semantic
differences between the application’s data objects and the low level data packets make it difficult
for higher level applications to gain the full benefits of data network sustainability.

Unlike packet switched data networks, HPC program interfaces (API) handle only two states
of each transmission: success or failure. The timeout (unknown) state is left to the program-
mer’s own devices. Due to the lack of alternatives, timeout is treated identical to failure. Since
the probability of transient failures grows proportionally to the component count in the pro-
cessing environment, from the applications’ perspective,every transient error is a single point
failure. Any transient failure can bring the entire application to a complete halt. Restarting the

Preprint submitted to Journal of Parallel and Distributed Computing March 25, 2012

application from the last failed point requires periodicalcheckpointing. Even with the optimal
checkpoint intervals, work (and energy) loss is inevitable. Bigger losses are expected for larger
applications. These problems are most pronounced in HPC applications. As we continue to grow
the component counts in supercomputers and high performance clusters, the two-state-only time-
out practice ensures continued decline of application’s mean time between failures (MTBF) ([2],
[3]).

For HPC applications, it is commonly accepted that to achieve higher performance, relia-
bility must be sacrificed. For higher application reliability, performance must be sacrificed [4].
Removing this limitation is generally considered very difficult.

Our research has found that sustainable solutions for largesystems are feasible if tackled
by application types [5]. The idea is to apply statistical multiplexing on application dependent
objects, if we can define them correctly. For HPC applications, the first challenge is to identify
the unit of transmission that would be acceptable for all application types. Unlike traditional
HPC interconnection networks, a tuple switching network’sunit of transmission is an application
dependent data tuple. Since data parallel processing is a well established discipline ([6],[7] and
[8]), using the data tuple as the unit of transmission shouldbe theoretically acceptable for all
HPC application types. The next challenge is to design a parallel processing paradigm and
architecture that can support statistical multiplexing ofuser data processing and transmission
leveraging multiple redundant computing nodes and networks. By the End-to-End principle [9],
the HPC application’s API must also be revised to include thestatistical multiplexing semantics.

This paper reports the architecture of a tuple switching network, its processing paradigm
and implementation details. Tuple-driven parallel processing decouples HPC programs in time
and in space thus allowing statistical multiplexing of communicating tuples. Like the packet
switched data networks, the tuple switching network statistically mitigates the unknown states
of tuple transmission and processing by leveraging potentially massive redundant networks and
computing nodes. If we consider the packet “store-and-forward” equivalent to an HPC appli-
cation’s checkpoint, the tuple switching network is identical in structure to a packet switching
network [10]. Thus, given properly partitioned tuple (data) parallel programs, a tuple switching
network could afford high sustainability for extreme scale HPC applicationsleveraging virtually
unlimited number of redundant networks and computing nodes.

Tuple switching network marks a departing point from peak performance-only HPC designs.
Since packet processing is done “statelessly”, the processing paradigm is essentially a state-
less parallel processing (SPP) machine. Tuple switching network supports both homogeneous
and heterogeneous processors and networking technologies. Therefore it encourages continued
diverse developments of lower level processors and networks including on-chip networks, many-
core and multi-core processors and multiple point-to-point interconnects and system-wide net-
works. A two-tier tuple switching network will be capable ofleveraging legacy HPC applications
for future fault tolerant extreme scale applications. To strengthen our arguments, we also include
a mathematical sustainability model and a simple computational experiment to demonstrate the
expected application performance in extreme scales of rapidly decreasing MTBFs. Our results
show that assuming three times slowdown of the statistical multiplexing layer, for an application
using 1024 processors with 35% time loss per checkpoint, thetwo-tier tuple switched network
will produce sustained performance and energy savings for systems with less than 6 hour MTBF.
Higher processor counts or higher checkpoint overheads accelerate the benefits.

Since sustainable systems must deal with component faults –a long standing non-trivial
topic, to contain the complexity of discussion we focus on the sustainability of HPC applications
in general. Programming examples are included in Appendix A. This paper is organized as

2

follows: Section 2 is a survey of parallel processing paradigms and their performance and fault
tolerance methodologies. We focus on their intrinsic features for applications sustainability.
Section 3 discusses the motivation and the concept of semantic statistical multiplexing. Section
4 presents tuple-driven parallel processing paradigm. Section 5 describes the architecture of the
proposed tuple switching network, its implementation and its sustainability model. Section 6
reports the design and implementation of a simple computational experiment in order to validate
the sustainability model with component failures. Section7 contains discussion of the results and
their relevance to established HPC practices and benchmarks. Section 8 contains the summary
and future directions.

2. HPC Programming Paradigms and Application Fault Tolerance

2.1. HPC Programming Paradigms

From programming style’s perspective, there are two HPC programming paradigms: ex-
plicit and implicit. Explicit parallel programming requires the programmer to specify in detail
how concurrent processes communicate with one another. This allows the application to take
advantage of processing architecture’s features for higher performance. There are two popular
process-to-process communication methods: message passing (MPI) [11] and shared memory
(OpenMP) [12]. Detailed instructions are expected by the explicit parallel processing system for
executing the parallel programs.

In the last two decades, explicit parallel programs have demonstrated very high performances.
They have become the international standards for supercomputer benchmarks (http://www.top500.org).
For extreme scale applications, however, we still face the following challenges:

• Programming complexity is too high. An application programmer is required to be a do-
main knowledge expert, familiar with supercomputer hardware details and a skilled coder.

• Increasing failure rate. As supercomputers grow in socket counts, the application mean
time between failure (MTBF) is fast shrinking. The explicitprogramming requirements
make failure prevention for large scale applications difficult.

• Energy efficiency. Increasing failure rates force the applications tofrequent checkpoint and
restarts (CPR). For extreme scale applications, even with the “greenest” processor designs,
the CPR overheads would be cost prohibitive.

Implicit parallel programming hides the process-to-process interaction from the programmer.
The programmer only specifies the rules for data generation and consumption. The runtime
system is responsible for the interactions between programs and data. Changing processing
granularity involves sending out different number of working assignments. No recoding should
be required for granularity tuning unless the tuning range needs to cross the iteration boundaries.

To date, there are approximately five different implicit parallel programming paradigm im-
plementations:

• Hardware-based. The very first data parallel machines, suchas the MIT Tagged Token
machine [6] and the Manchester dataflow machine [13], used hardware data matching
circuits to activate programs.

3

Figure 1: Price History of Auctioned Cloud Resources (Amazon.com: 5/5-11/2011).

• Compiler-based. This approach was designed to avoid the communication “buffering
overhead” by generating pseudo dynamic behavior of data matching using a code gen-
erator [14].

• Tuple space server-based. This approach has the advantage of ease of programming and
performance tuning but carries the extra communication overheads without exploiting their
full potentials ([15], [16] and [17]).

• High-level programming language-based. Cilk [18] is a higher level parallel programming
language. The philosophy behind Cilk is that a programmer should concentrate on struc-
turing her or his program to expose parallelism and exploit locality, leaving Cilk’s runtime
system with the responsibility of scheduling the computation to run efficiently on a given
platform.

• Infrastructure-based. The Hadoop system [1] was designed to tackle data intensive large
scale loosely coupled applications. Its applications are called “map-reduce” applications
that use “divide-and-conquer” algorithms to complete extremely large jobs quickly and
reliably. Its runtime system tracks and recovers failed tasks automatically.

Implicit parallel programming has reduced programming complexity and the potentials to
offer cheaper fault tolerance. However,to date, except for theHadoop system, most implicit
parallel programs have yet to demonstrate superior performances.

2.2. Fault Tolerant Computing
Applications that can sustain frequent failures can reduceactual computing costs. Figure 1

shows the history of bidding prices of high performance GPU instances with 4xlarge memory in
May 2011 at the Amazon cloud. An out-of-bid failure occurs when an instance is acquired by a
higher bidder.

Figure 2 shows the relationship between the application’s uptime and bidding prices. For
example, assuming zero CPR overhead, for an application requiring 10 hours of computing time
using 100,000 instances, the bidding price of 56 cents/hour/instance would encounter one out-
of-bid failure on average, or MTBF 5 hours. Bidding 53 cents/hour/instance would generate
frequent out-of-bid failures (MTBF) in less than an hour interval. For this task, the cost difference
is about $30,000.

There are also hardware failures. Although component failure in a single modern processor
is a small probability event, when massively many processors are networked together, the cumu-
lative effects are formidable. Garth Gibson observed that despite of the development slowdown

4

Figure 2: Uptime Probability vs. Bidding Prices.

of faster cycle processors, the number of sockets (cores) per supercomputer would double every
year or so. Figure 3 shows three growth models that doubles socket counts every 18, 24 and 30
months [3].

The Petascale Data Storage Institute (PDSI) at Carnegie Mellon University (http://www.pdsi-
scidac.org/) has collected and analyzed historical hardware failure data and observed the follow-
ing [19]: the hardware failures lie in between a rate of 0.1 and 0.25 per year per processor
regardless of the configuration of the machine. Since the failure rate of the CPU itself is very
small, the failures can be assumed to be tied to sockets rather than processors. Figure 4 shows
the projected mean time to interrupt (MTTI) for the three socket growth models in Figure 3.

Currently, the lack of scalability in HPC applications has driven their MTBFs down to 60
minutes [2], known as the “one hour barrier”. This means thatfor certain large scale applications
today it is not possible to have a full hour failure-free run using the current combination of
hardware and software. The problem worsens if the application up scales in size.

To preserve the intermediary results, checkpoint-restart(CPR) [20] is necessary. CPR re-
quires periodical savings of application’s intermediate states. When the application crashes (any
transient component failure can cause this to happen), we can restart the application from the last
checkpoint, thus preserving the energy that had generated the results.

For HPC applications, there are two kinds of CPR:system levelandapplication level. System
level CPR is provided by the parallel programming API (Application Programming Interface)
and its processing environment that allows the applicationprogram to call for a checkpoint using
a single instruction. Recovery is automatic. The Berkeley’s BLCR library [21] is an example
of system level CPR. Application level CPR [22] is provided by the programmer who must use
his/her understanding of the program to find the suitable time andfrequency to save critical data
sets. The programmer is also responsible for the coding of application recovery after failure.

In a typical many-core or multi-core parallel system, the host processor must use shared

5

Figure 3: Socket Count Growth Trend in Supercomputers.

Figure 4: MTTI Trend Prediction by Garth Gibson in 2007.

6

memory to communicate with multiple sub-processors. A system level checkpoint must save
the memory contents accessed by all processors. At the present time, this type of checkpoint is
considered a non-trivial challenge ([23], [24] and [25]).

Existing standard HPC frameworks are explicitly parallel,such as the message passing stan-
dards [26] and shared memory standard OpenMP [12]. Variantsinclude OpenMPI [27], MPICH [28],
MPICH-V [2] and MVAPICH [29]. These systems can support checkpointing the state of indi-
vidual nodes using the BLCR library and for checkpointing and re-constructing single or multiple
level communication states using sophisticated techniques ([22], [2]).

In practical production codes, only application level CPR is widely used. The optimal CPR
interval can minimize the overall running time and save the energy consumption by committing
the minimal number of checkpoints. Finding and implementing the optimal CPR interval requires
non-trivial calculations ([30], [31]). Even with the optimal intervals, time and energy losses are
inevitable. For general purpose HPC, fault tolerance at scale is considered very difficult [32].

Since CPR relies on the stable storage for backup data, the pressure on storage is mounting.
Even though hardware technologies have improved circuit reliability from historical 0.25% per
year per socket to 0.1%, Garth Gibson [19] predicted the following in 2007:

• Top500 supercomputers will double peak FLOPS annually.

• Cycle time will be flat while number of cores on chip grow on Moore’s Law.

• Mean Time To Interrupt (MTTI) failure rate will be up 25% to 50% per year.

The actual failure rates had met and exceeded his predictionafter the introduction of general
purpose GPU (GPGPU) for HPC applications.

It is commonly recognized that none of the above mentioned fault tolerance methods would
be capable to contain the rapid growth of failure rates.

In contrast, we observe that the low level point-to-point packet switching network can tolerate
multiple component failures and can gain performance and reliability at the same time if includ-
ing more switches and routers. A curious question is: Why can’t we deliver HPC application’s
sustainability using the same techniques?

3. Motivations

The structural advantages of packet switching networks arethe primary motivation of the
reported methodology. Unlike HPC application networks, a packet switching network gener-
ally allows unlimited scalability in performance and reliability as the network component count
increases. Since all HPC applications must involve communications, if we can re-formulate
the HPC computing failure problem as a communication failure problem, the sustainable HPC
application challenge may have a practical solution. We paid special attention to the timeout
treatments in HPC applications. Due to the lack of easy alternatives, an HPC application trans-
mission timeout is treated as a fatal error. Therefore, the entire application will halt on every
transient component failure. Since the number of transientfailures increases proportionally as
the system grows its component count, HPC application’s MTBF must decrease accordingly.

To decouple the transient component errors from a HPC application, the application pro-
grams should be decoupled to allow statistical multiplexing on the exchanged data. Unlike the
packet switching networks, the sustainable HPC application network requires statistical multi-
plexing of redundant computing and communication components. Like in the packet switched

7

Figure 5: Messaging network and packet-switching data network.

network, the HPC re-transmission logic must also be coupledwith idempotent processing plus
a statistically multiplexed infrastructure. These constitute the core of the proposed tuple switch-
ing network. Historically, the counter-intuitive store-and-forward packet switching network has
helped to deliver the most sustainable man-made architecture in human history: the Internet.

The key concepts in a successful sustainable applications network seem to include three
elements:

• Find a service dependent unit of transmission.

• Develop an end-to-end protocol with re-transmission and idempotent processing based on
the unit of transmission.

• Develop a statistical multiplexed infrastructure based onthe unit of transmission.

Without statistical multiplexing, the actual state of a communication task is theoretically
not confirmable ([33], [34] and [20]). With statistical multiplexing, the probability of suc-
cess increases proportionally as the number of redundant computing and communication paths.
The re-transmission protocol includes implicit transientstorages for the communicating data.
Therefore, increasing the networking component counts improves the application network’s per-
formance and reliability at the same time. Although the packet-switching overhead is significant
compared to direct circuit-switching protocols, the economy of scale in low cost fault tolerance
and unlimited scalability of packet switching concept havebeen proven effective and widely
accepted in practice.

One wonders why the low level data network benefits cannot be better exploited by higher
level applications without structural changes at the application level. The answer is that they
operate on different units of transmissions (Figure 5). Since the mutual information between
the HPC application data and the low level packets is near zero [35], although the lower layer
packets are automatically multiplexed (if packet switched), the complete application objects are
only transmitted once. Thus they are semantically identical to datagrams in low level UDP data
networks. By the end-to-end principle [9], not only a statistically multiplexed infrastructure is
necessary, but also the application programming interface(API) must include the semantics of
statistical multiplexing for the application to be sustainable.

In other words, we are interested in an “infrastructure-based” implicit parallel programming
paradigm, we call “tuple switching network”. The proposed system will rely on the application
generated data flows to dispatch parallel programs automatically. The semantic statistical multi-
plexing infrastructure ensures zero single point failure and application sustainability at the same
time.

8

Ultimately, since the application semantic network decides the final results of the HPC appli-
cation, we argue that without semantic statistical multiplexing, it is not possible to eliminate all
single-point-failures in the applications network. And itis also not possible to gain performance
and reliability at the same time as we add resources.

In comparison to the Hadoop system [1], the proposed tuple switching network is a general-
ization that is capable of extreme scale generic HPC applications and extreme scale data intensive
applications.

4. Tuple-Driven Parallel Processing

In a tuple-driven parallel processing environment, application dependent data tuples are
stored and forwarded by a tuple space infrastructure. Automatic worker failure protection can
be provided by the tuple space implementation to allow a retrieved tuple to assume “invisible”
status until its processing is completed. If the corresponding result does not arrive in time, its
“invisible” status can be reversed to “visible”, allowing other available computing nodes to com-
pete for the unfinished task [30]. In view of the tuple switching network, this mechanism satisfies
statistical multiplexing requirement analogous to the automatic re-transmission of TCP packets.

The tuple-driven parallel processing environment has the identical semantics of a data driven
parallel processing model. This saves us from providing thefeasibility arguments.

Since most high power many-core and multicore processors are exclusively used for parallel
workers, this allows us to use tuple parallel programming tomeet the system level many-core
and multicore processor checkpoint challenges.

Unlike explicit parallel programming methods, tuple-driven parallel programming relies on
communicating tuples to automate task activation (also called “firing” in literature [6]). This en-
ables automatic formation of SIMD, MIMD and pipeline clusters at runtime [6]. The net-benefit
of this feature is automatic “hiding” of communication latencies (or “work stealing” [18]). For
extreme scale HPC applications, these qualities help in reducing parallel programming complex-
ities.

In addition to “stateless” workers, a practical HPC application must also contain “stateful”
masters (programs responsible for delivering the semantically identical results as sequentially
processing the same data). The masters must still be checkpointed to preserve the intermediate
results. It is not immediately clear if the overall computing time with multiple master checkpoints
(although less frequent and potentially smaller) would still deliver sustainable savings given the
potentially slower tuple switching network.

A tuple-driven programming environment forces the programmers to focus on data partitions
to expose parallelism in proper granularity. The data partitioning strategy determines the ultimate
deliverable performance. There is no need to manually manipulate concurrent tasks.

The tuple-based API does not have a fixed process-data binding. Therefore, it is possible
to statistically multiplex the application data in between. Specifically, if the tuple-based API
contains re-transmission and idempotent processing for application tuples, supported by a robust
tuple space implementation, all-around scalability must be attainable.

The tuple-driven applications require the processing environment to support a tuple space
abstraction for matching computing tasks at runtime. This is the source of additional communi-
cation overhead which almost doubles the cost for every direct inter-processor communication
request. However, these overheads have enabled new important possibilities for extreme scale
applications:

9

Figure 6: Tuple Switching Network.

1. The possibility to deploy multiple interconnection networks in parallel, thus relieving the
pressure on the single interconnection network to allow more computing nodes in parallel
and to support diverse communication patterns.

2. The possibility to offer automatic worker fault tolerance, thus reversing the negative effect
on application MTBF and delivering sustainable performances.

The tuple-based API also makes it easier to seamlessly incorporate multiple heterogeneous
processor types, such as single-core, many-core and multicore CPUs, DSPs, and GPGPUs. It can
also include legacy HPC applications. This is the basis for the proposed two-tier tuple switching
system.

Like the Internet, a tuple switching-based two-tier network can potentially deliver scalable
performance, scalable availability and energy efficiency at the same time.

The following sections reports the design and implementation of tuple switching network
and findings based on an experimental tuple-based statistical multiplexing project named Syn-
ergy [36].

5. Tuple Switching Network and Stateless Parallel Processing

5.1. Architecture

Tuple switching network requires a data-driven parallel processing paradigm. Unlike existing
command-driven paradigms, data parallel programs must assume zero global state. In this sense,
data-parallel programs can be considered stateless parallel programs (SPP) [37]. Figure 2 shows
the conceptual architecture of the proposed tuple switching network.

In Figure 2, SW represents a collection of redundant networks. UVR stands for Unidirec-
tional Virtual Ring – a fault resistant (self-healing) virtual communication channel that links all
nodes for an application. Each node is a standalone processor of some particular type. Each node
has multiple network interfaces, local memory, disk and single or multiple processing units; it
can also host multi-core or many-core processors.

The global tuple space is implemented as follows:

1. Data requests are matched locally. Unmet requests travelthrough UVR for global match.
2. All nodes participate in data matching in parallel.
3. All networks participate in direct exchange of matched data.

10

Figure 7: Static and statistical semantic networking.

These functions are implemented in a single daemon that runson each node. Like typical
peer-to-peer systems, these daemons communicate with eachother to form a single consistent
HPC machine image using all runtime available resources. Each daemon implements a local
tuple space for programs running on the node. Global data matching requests travel by UVR.
The actual global data transfers are done in parallel via themultiple redundant physical networks.
Running applications with optimized grain sizes should have only a few tuples residing on each
node. At the application level, all nodes participate in a statistically multiplexed global tuple
space. Programs use the tuple space API to communicate with alocal daemon which in turn
communicates with other daemons to complete data acquisition in parallel if the request cannot
be met locally. Each application exploits multiple redundant networks automatically to counter-
balance the inherent speed disparity between computing andcommunication components. There
is no single point failure for such HPC applications. Using abinary broadcast protocol, each
UVR can scale to include millions of nodes with no more thanO(lgP) data matching complexity.

Failure containment for multiple multicore and many-core processors is now feasible by
leveraging the automatic “worker fault tolerance” withoutinvolving low level memory CPR.
Unlike traditional supercomputing environments, the statistical multiplexed semantic network
promises enhancing application performance and reliability at the same time by adding redundant
computing nodes and networks.

Figure 3 makes a conceptual comparison between the explicitand implicit application net-
works, whereT stands for “tuple” which is the unit of transmission of the HPC semantic network.

In Figure 3, the explicit parallel programming API producesa static application network.
Each transmission is semantically identical to a UDP datagram in lower level networks: it only
gets sent once. The implicit parallel programming API allows the tuples in the semantic network
to form TCP-like virtual circuits with automatic re-transmission and idempotent processing by
the tuple switching infrastructure (tuple space).

5.2. Application Development

A data-driven HPC application will use only data tuples for inter-program communication.
The Tuple Space abstraction [8] is a natural representation.

The tuple space API contains three data manipulation primitives [37]:

1. Put(TupleName, buffer): This call inserts the contents of “buffer” with TupleName into
the space.

2. Get(&NameBuffer, &buffer): This call retrieves and destroys a tuple with a matchingname
in NameBuffer.

3. Read(&NameBuffer,&buffer): This call only retrieves a tuple with a matching name in
NameBuffer.

11

Figure 8: Logical View of SPP Programming.

The “&” sign represents “access by reference” meaning that the variable NameBuffer’s con-
tents can be altered to hold the value of a matching tuple nameat runtime.

Since different processor types and processing environments requiredifferent coding (MPI,
OpenMP, CUDA, etc), each worker can contain multiple implementations for the same kernel in
order to adapt itself to the available resources at runtime.

Figure 4 illustrates the programmer’s view of tuple space parallel processing. Each applica-
tion will be decomposed into multiple masters with each responsible for a computing intensive
kernel in the application. Each master program is matched with a single worker program. Each
worker program will run automatically on multiple available heterogeneous processors.

The master program uses the “Put” command to send unprocessed work assignments to the
tuple space. It uses the “Get” command extracts the results.

The worker program repeats the “Get”, “Compute” and “Put” sequence for as long as there
are assignment tuples. Since the worker codes are programmed to automatically adapt to different
processors, it will run on all nodes accessible at runtime. The application terminates when there
are no more assignment tuples.

The correct user data handling relies on statistical multiplexing of redundant computing and
networking resources. Without an infrastructure supported unit of transmission, it is not pos-
sible to implement statistical multiplexing correctly using explicit parallel programming APIs
or compiler-based implicit parallel programming methods,such as the approaches taken by the

12

Linda project [8] and others [18].

5.3. Sustainability Analysis

In this section, we assess the application’s sustainability by its expected time savings using
“worker fault tolerance”, as promised by the statistical multiplexed tuple switching network.

To do this, we build two models (based on [30]) for a typical HPC application with check-
points. The first one is for explicit parallel programming systems where any component failure
would cause the entire application to halt. The second is forimplicit parallel programming, where
only master failure or 100% worker failure would halt the application. We then compare the ex-
pected processing times using the respective optimal checkpoint intervals. It is worth mentioning
that unlike [31] where the optimal checkpoint interval model was based on a system exhibiting
Poisson single component failures, the following models assume multiple Poisson component
failures.

According to [30], we define the expected computing time withfailure, as follows:

• t0: Interval of application-wide checkpoint.

• α: Average number of failures within a unit of time which follows Poisson distribution.

• K0: Time needed to create a checkpoint.

• K1: Time needed to read and recover a checkpoint.

• T: Time needed to run the application without checkpoints.

Further, we define:

• α1: Average number of failures of critical (non-worker) element failure in a time unit
which follows Poisson distribution.

• α2:Average number of failures of non-critical (worker) element failure in a time unit which
follows Poisson distribution.

Thus,α = α1 + α2.

Assuming failure occurs only once per checkpoint interval and all failures are independent,
the expected running timeE per checkpoint interval with any processing element failure is

E = (1− αt0)(K0 + t0) + αt0(K0 + t0 + K1 +
t0
2

)

.
The expected running time per checkpoint interval with worker failure tolerance will be:

E′ = (1− αt0)(K0 + t0) + α1t0(K0 + t0 + K1 +
t0
2

) + α2t0(K0 + t0 + X)

.
whereX = recovery time for worker time losses per CPR. We can then compute the differ-

encesE′ − E, as follows:

13

E − E′ =(α − α1)t0(K0 + t0 + K1 +
t0
2

)

− α2t0(K0 + t0 + X)

=α2t0(K0 + t0 + K1 +
t0
2
− K0 − t0 − X)

=α2t0(K1 +
t0
2
− X)

Since the number of workers is typically very large, the savings are substantial. The total ex-
pected application running timeET without worker fault tolerance is:

ET =
T
t0

(K0 + t0 + α(t0K1 +
t20
2

))

We can now compute the optimal checkpoint interval:

dET

t0
= T(−K0

t20
+
α

2
)

t0 =

√

(
2K0

α
)

The total application running timeET with worker fault tolerance is:

ET = T(1+
K0

t′0
+ αK1 +

αt′0
2
− α2K1 −

α2t′0
2
+ α2X)

The optimal checkpoint interval with worker fault tolerance is:

dET

t′0
= T(−K0

t′20
+
α − α2

2
)

t′0 =

√

(
2K0

α − α2
)

For example, if we set the checkpoint intervalt0 = 60 minutes, the checkpoint creation and
recovery timeK0 = K1 = 10 minutes, and the average worker failure time lossX = 30 sec or
0.5 minute, the expected savings per checkpoint under any single worker failure is about 39.5
minutes (or greater than 50% savings).

E − E′ = α2t0(K1 +
t0
2
− X)

= (10+ 30− 0.5)

= 39.5,

becauseα2t0 = 1 (single worker failure).
On the other hand, if the MTBF is 3 hours in a system of 1024 processors, this givesαt0 =

180α = 1 orα = 1/180. Thus,α1 = 1/(180∗ P) = 1/184, 320. The optimal checkpoint interval
for a system with a single master and 1024 workers would be:

t′0 =

√

(
2K0

α − α2
) =
√

2× 10× 184320= 1, 920.

14

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

0

5

10

15

20

25

30

0 1 2 3 4 5 6

0

10

20

30

40

50

60

0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

80

E
xp

ec
te

d
tim

e
in

 d
ay

s

MTBF in hours

 Expected time with no Failures
 MPI C/R= 5%
 Synergy C/R= 5%

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d
tim

e
in

 d
ay

s

MTBF in hours

 Expected time with no Failures
 MPI C/R= 25%
 Synergy C/R= 25%

0 1 2 3 4 5 6

0

5

10

15

20

25

30
E

xp
ec

te
d

tim
e

in
 d

ay
s

MTBF in hours

 Expected time with no Failures
 MPI C/R= 50%
 Synergy C/R= 50%

0 1 2 3 4 5 6

0

10

20

30

40

50

60

E
xp

ec
te

d
tim

e
in

 d
ay

s

MTBF in hours

 Expected time with no Failures
 MPI C/R= 75%
 Synergy C/R= 75%

0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

80

Figure 9: Sustainability analysis: Expected Elapsed Time vs. MTBF (P= 1024, Tuple Space slowdown factor= 3).

This means that for this HPC application using 1024 nodes, itis not necessary to checkpoint the
master unless the application running timeT is greater than 30 hours.

In terms of energy savings, for an application that needs 30 hours computing time, the total
energy savings would be about 5 Megawatt hours (1024 processors with 187 watts per many-core
GPU processor).

Assuming the statistical multiplexing (tuple space) slow down factor= 3, Figure 5 shows
the expected time savings (T) versus the application MTBFs as the CPR overhead (Checkpoint
Time/Running Time) varies from 5%, 15%, 25% to 35% for a processor of 1024 nodes. In Figure
5, higher CPR overheads or lower MTBFs deliver bigger performance advantages.

These figures also suggest the practical break point betweenusing single tier mono-scale
simulation and two-tier, possibly multi-scale simulation. The tuple switching network should
be introduced in the second-tier to contain the risks of lower tier failures. The lower tier is a
collection of concurrently running legacy HPC production codes solving multiple subproblems.
Since multicore and many-core processors are almost exclusively used for workers, the proposed
paradigm offers system level multiple multi-core/many-core processor fault tolerance without
involving checkpointing low level shared memories.

15

6. Computational Experiment

6.1. Experiment Setup

Application. For simplicity, we use matrix multiplication to simulate the compute intensive
core of a large scale time marching simulation application.Given twoN × N matricesA0 andB,
the experimental system computesk matrix products as follows: (0< i ≤ k):

C = Ak × B,

Ai = Ai−1 × B

C is the final solution. We then created one MPI and one Synergy implementation for the same
application. Both implementations include a master and a worker.

For the MPI program, granularity is set toNP (P=number of processors). The Synergy pro-
gram granularity tuning range is the top loop of the three nested iterations (see Appendix A).

Objectives. We would like to compare the actual running times of MPI and Synergy imple-
mentations with and without failures. We record the following information:

1. Elapsed time without checkpoints.
2. Elapsed time with checkpoints without failure.
3. Elapsed time with checkpoints and recoveries with injected failures.

Processing Environment. We used the Lincoln cluster by NCSA, hosted at Teragrid (www.teragrid.org),
for the reported experiments. The Lincoln cluster consistsof 192 compute nodes (Dell Pow-
erEdge 1950 dual-socket nodes with quad-core Intel Harpertown 2.33GHz processors and 16GB
of memory) and 96 NVIDIA (many-core) Tesla S1070 accelerator units. Our application al-
lows 20 Tesla units. Each unit has 8 CPUs with 2.33 GHZ each, 16GB memory total, and 4
Tesla S1070 cards. Each unit provides 345.6 gigaflops of double-precision performance. The file
system is Lustre with 400 TB disk storage shared with anothercluster (Abe).

Development Software. All experiments run in Red Hat Enterprise Linux 4. The GPU codes
use CUBLAS (CUDA 2.2) and Intel C++ compiler 10.0 for Linux.

The parallel processing environments include:

• OpenMPI (http://www.open-mpi.org/)

• Synergy v3.0 (http://spartan.cis.temple.edu/synergy)

Failure Injection Method. The minimal number of processors we would like to validate our
calculations with is 1024. We distribute the failures to theoptimal number of GPU units for each
environment.

We use a Poisson random number generator, as in [38], to perform the injection of failures.
The failure injection algorithm accepts variable MTBFs.

6.2. Computation Experiment and Results

In practice, the checkpoint creation timeK0 is different for MPI and for Synergy. For MPI,
the checkpoint must include the global state of all involvednodes. For Synergy, the master
checkpoint only needs to include local states. Multiple masters will checkpoint in sync and in
parallel using a distributed synchronized termination algorithm [39].

The recovery timeK1 is also different. For MPI, the recovery time covers reading of a glob-
ally saved state. For Synergy, the recovery time includes launching multiple masters reading

16

5 (500,2000)

5 (1000,2000)

5 (2000,2000)

15 (100,700)

15 (500,700)

15 (600,700)

19 (100,600)

19 (200,600)

0 50 100 150 200 250 300 350

N
um

be
r o

f G
P

U
 w

or
ke

rs
(S

yn
er

gy
 g

ra
nu

la
rit

y,
 O

pe
n

M
P

I g
ra

nu
la

rit
y)

Total running time in seconds

 Total running time Open Mpi
 Total running time Synergy

Figure 10: Performance without checkpoint and failure (N= 10,000; Rounds= 10).

the multiple saved states in parallel. For simplicity, we consider the differences negligible and a
single master is necessary.

The matrix multiplication kernel is programmed using CUDA linear library CUBLAS. It
is included in the CUDA 2.2 toolkit. The CUDA kernel is “wrapped” by the Synergy calls as
depicted in Figure 4.

GPU programming is very sensitive to the change in the granularity due to loading overheads.
Fine tuning granularity produced counter-intuitive results, shown in Figure 5 (P = 5), where MPI
granularity is fixedN

P .
Figure 6 also shows that the best time to solution for the MPI implementation is 19 GPU

workers (granularity= 600). The best time to solution for the Synergy implementation is 5 GPU
workers (granularity= 1000).

Both the MPI and the Synergy workers can be programmed to adapt to either CPU or GPU
processors at runtime based on the availability of a free device. In this experiment we used
workers that only finds GPU devices, locking it and using it todo the matrix computation.

As mentioned earlier, system level CPR for multiple GPUs is an unsolved challenge for MPI
codes. We had to use application level checkpointing. The same CPR code is used for Synergy
master, where worker fault tolerance is provided by automatic “shadow tuple” recovery [37].

The computation results were recorded runs with the following parameters:

• N = 10, 000.

• P = 5 or P = 19 (the best time to solution for Synergy and MPI respectively).

• K = 400 (rounds).

• K0 is measured 10 seconds.

• t0 andt′0(optimal CPR interval) are calculated automatically for each scenario.

The failure injection algorithm is tunable for different MTBF values. We then distributed the
projected failures (based onP = 1024) across all processing nodes statistically.

17

0 200 400 600 800 1000
2000

2500

3000

3500

4000

4500

5000

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

MTBF in seconds

 Synergy
 Open Mpi

Figure 11: Running time with failures. N= 10,000; Rounds= 400; P= 5(Synergy); P= 19(OpenMPI).

Figure 6 shows the performance differences between OpenMPI and Synergy without check-
points. For Synergy, the shadow-tuple capability is alwaysenabled. It shows that for small
number of GPU units (5), Synergy out performs MPI due to granularity optimization. MPI beats
Synergy performance at largerP values. For the same amount of work, MPI program needed
more GPU resources.

As mentioned earlier, our application level checkpoint simply writes the matrices to the stable
storage synchronously (to avoid restart errors). Otherwise, we would lose the latest checkpoint
due to the disk caching. All checkpoints are executed at the dynamically calculated optimal
intervals according to the number of processors used and thediscussions in Section 5.

Failure were injected by a “killer” program. The killer program runs at the end of each MTBF
cycle (Figure 6). It then kills a random running process.

For the MPI run, each random kill is “all or nothing”. This means that if the “killer” needs
to terminate any process, the master must reload the last checkpoint file and lose all the rounds
computed since. Since the reloading is mandatory, this setup produces statistically equivalent
results as forP = 1024.

In the case of the Synergy run, the master CPR process is similar to MPI except that the
failures are statistically distributed as master or workerfailures. A master failure will follow the
same process as MPI, but a worker failure does not stop the running. Once a worker is killed the
work tuple that was assigned to this worker reappears in the tuple space after a short delay. A
new computing node will pick up the load. This allows the overall computation to continue with
limited time loss (variableX as discussed in Section 5).

Figure 7 shows the computational results for OpenMPI and Synergy with injected failures.
We accelerated MTBFs to explore the potential impacts of higher failure rates. The results are
consistent with the sustainability model predictions.

7. Discussions

This paper reports a tuple switching network for sustainable generic HPC applications at
scale. We proposed an Internet-like two-tier tuple switching network in order to mitigate the

18

increasing risks of massive component failures and to gain performance scalability at the same
time.

We argue that explicit parallel programming is not appropriate for extreme scale applications
for its inability to handle uncertainties. The current standard benchmarks are the best practices
of explicit parallel programming. These results, however,can be leveraged for extreme scale
application if integrated with the proposed tuple switching network at the higher level.

The tuple switch network also brings the possibility of parallel performance optimization.
Finding the optimal processing granularity is a tricky problem for explicit parallel systems like
MPI and OpenMP, since every change in granularity requires re-coding. In implicit or dataflow
environments, parallel programs and their data are decoupled in time and in space. This gives the
application network layer a chance to handle uncertainties. Granularity change does not require
re-coding if the tuning range is within the same loop index. Alinear coarse-to-fine grain optimal
granularity finding process (outermost loop⇒ innermost loop) can identify the optimal partition
depth (tuning range). Since the ratio between aggregate computing and communication directly
affects the optimal partition depth, instrumentation and experimentation are also required. For the
matrix multiplication example above, we found the optimal granularity for the NCSA Teragrid is
still the top loop (see Appendix A). Fine turning the grouping factor within the top loop produced
better performance than its MPI counterpart when P= 5. Note that the Synergy performance
includes the checkpoint (shadow tuple) overheads for all worker nodes.

In anticipation for future technology advances, ideally, the “best” parallel programs should
be able to change processing granularity without changing code at all, since hand-tuned paral-
lel codes will quickly lose their performance advantage as soon as the processing environment
changes. The need for tunable and sustainable HPC code also becomes more evident if we want
to leverage auction-based cloud resources, since applications that can tolerate higher out-of-bid
failures will cost far less than those that do not. To minimize manual work, we have also stud-
ied an automatic data parallel code generation method usinga simple parallel markup language
(PML) [40] for cross level performance optimization.

If we consider each packet buffer as a CPR point for data service, we can then envision ex-
treme scale applications using the same strategy by eliminating “state spreading” and by statisti-
cally multiplexing semantic communicating objects. The standard benchmarks are still relevant
for they have set the baseline of the best performing “fat nodes”. Using the proposed two-tier
framework, we can deliver extreme scale performances by statistically multiplexing multiple “fat
nodes” and multiple interconnection networks that link them.

The advent of auction-based cloud computing further stimulates the need for sustainable HPC
applications, since better costs are delivered by lower bidding prices (higher out-of-bid failures)
(Figure1). With tuple switching framework, it is possible to define the “optimal” cost for a given
HPC application based on a given budget, time or both.

Sustainable applications are also energy efficient. The savings come from drastically reduced
CPR overheads and improved resource efficiency. The proposed tuple switching network touches
power efficiency, programming complexity and failure tolerance aspects of extreme scale HPC
applications. As hybrid HPC systems have demonstrated moreefficiency and cost effectiveness
than homogeneous systems [3], the proposed framework fits well into the technology evolution
trajectory.

For some applications, such CFD (computational fluid dynamics) codes, to gain application
sustainability, the mutually dependent stateful workers can be converted to stateless workers by
translating the “neighboring” dependencies via automatedtuple matching. The application will
lose some communication efficiency (as addressed in the paper by the slowdown factor), but it

19

will gain overall sustainability.
There are also more potentials for productivity gains. For example, since explicit parallel

programming is easier, it may not be necessary to manually write the tuple switching “wrappers”
for legacy applications for building the extreme scale application. Automated tools have been
experimented using Parallel Markup Language (PML)[40]. More efforts would be needed to
study how to compose multi-scale codes using the proposed tuple space parallel programming
environment [41]. This also applies to the GPGPU applications where skilled programmers
would focus on producing the optimized GPU kernels while thewrapper would be automatically
generated.

HPC application batch scheduling would also be greatly simplified since the tuple-driven
applications will exploit and optimize all available resources automatically. Similar to map-
reduce applications, there is no need to compute sophisticated resource scheduling policies. Non-
stop HPC application would become a reality where components can be taken offline for repair
without shutting down the running applications. Resource efficiency would further improve since
we can now afford the optimal processing granularity and optimal checkpoint intervals.

Future studies would also include research on diverse applications with different communi-
cation patterns. Automatic matching of interconnection network topologies with runtime com-
munication patterns would also be possible.

With commercial cloud computing a reality, minimal cost HPCcomputing is possible using
auction-based resources. The tuple switching network can comfortably handle the out-of-bid
failures to deliver more cost-effective solutions under practical constraints. Optimization models
are needed to help users to calculate the best strategy to maximize the yield of a given budget
or time. Since the tuple switching network is very similar tothe packet switching network, with
hardware advances in high performance circuits [42], it also is possible to develop hardware
support for application specific networks.

8. Conclusions

The fundamental result of the reported tuple switching network is the use of statistical multi-
plexing of application data to solve the seemingly “impossible” scalability challenge of extreme
scale HPC applications. We have shown that the powers of statistic multiplexing can be leveraged
to tame the nagging HPC sustainability challenges that havetroubled us for a long time.

Without statistical multiplexing both computing and communication components, it is not
possible to eliminate all single-point-failures in the applications networks. And it is also not
possible to gain performance and reliability at the same time as we add resources.

The proposed tuple switching network is a generalized infrastructure-based implicit parallel
processing paradigm. In comparison to the Hadoop system, the tuple switching network is more
general in that it is capable of extreme scale HPC applications and extreme scale data intensive
applications (with much lower overheads).

Our computational experiment demonstrated the practical feasibility that confirms with the
greater implications described in the sustainability model.

Architecture-wise, the proposed tuple switching network has merely removed the structural
impediments for sustainable HPC applications. Research offaster networks and processors are
still needed to shorten communication and processing latencies. Like the packet switching net-
work, the tuple switching network can only up scale bandwidth and reduce latency under over-
loading conditions. The architecture, however, is poised to subsume future advances in comput-
ing and communication devices.

20

Tuple switching network differs from the generic “messaging-switching network” [43] in
the semantics of unit of communication. Application semantic multiplexing also requires funda-
mentally different user data handling than traditional server-based generic tuple space implemen-
tations ([16] and [17]). Like the packet switching protocolthat has delivered scalable stochastic
and reliable deterministic data services, the same can be expected for tuple-based applications
using tuple switching network. Optimization of semantic network multiplexing is also possible
by cross layer research since most HPC semantic networks areimplemented using the TCP/IP
protocol. Optimization can help to eliminate unnecessary redundancies.

Tuple switching network is a solution for a type of network applications that are suitable
for using data tuples. These include HPC applications and many business and E-commerce ap-
plications ([16] and [17]). The general methodology can also be applied to solve sustainability
problems for other non-trivial network application types,such as online transaction process-
ing systems, extreme scale storage networks and extreme scale service oriented systems [5].
In theory, if an architecture can be defined to apply statistical multiplexing to the correctly
formulated application unit of transmission, the proposedmethodology can drastically reduce
communication-induced application-level uncertainties– a desirable feature for all large scale
mission critical applications. Like Johann Sebastian Bachonce said, “.. (if) the keys are pressed
at the right times, the instrument will play itself.” Since most applications naturally gravitate
towards mission critical status, the concept of statistical multiplexing of semantic network can
be important for all future robust extreme scale computing/communication systems.

Acknowledgments

The authors thank Dr. Axel Kohlmayer for the introduction toTeragrid resources. This
research is supported in part by a grant from the National Science Foundation CNS 0958854.

References

[1] Apache, Hadoop tutorial, 2011.
[2] F. Cappello, Fault tolerance in petascale/exascale systems: Current knowledge, challenges and research opportuni-

ties, International Journal of High Performance ComputingApplications 23 (2009) 212–226.
[3] J. Layton, Petaflops for the common man - 5 challenges, 2011. [Online]

http://en.community.dell.com/techcenter/high-performance-computing/w/wiki /2279.aspx.
[4] HPC resilience consortium, 2010. [Online] http://resilience.latech.edu.
[5] J. Y. Shi, Chapter 19: Fundamentals of cloud applicationarchitectures, Cloud computing: methodology, system,

and applications, CRC, Taylor & Francis Group.
[6] J. B. Dennis, Data flow supercomputers, Computer 13 (1980) 48–56.
[7] Arvind, Decomposing a program for multiple processor system, in: Proceedings of the 1980 International Confer-

ence on Parallel Processing, pp. 7–14.
[8] N. Carriero, D. Gelernter, How to Write Parallel Programs - A First Course, The MIT Press, Cambridge, MA, 1990.
[9] J. Saltzer, D. Reed, D. Clark, End-to-end arguments in system design, Second International Conference on

Distributed Computing Systems (1981) 509–512.
[10] P. Baran, On Distributed Communications, RM-3420, Technical Report,

http://www.rand.org/about/history/baran.list.html, 1964.
[11] M. P. I. FORUM, MPI: A message-passing interface standard, 1994.
[12] R. Chandra, et al., Parallel Programming in OpenMP, Morgan Kauffman, 2001.
[13] J. Gurd, I. Watson, A multilayered dataflow computer architecture, in: Proceedings International Conference on

Parallel Processing.
[14] S. Ajuja, N. Carriero, D. Gelernter, Linda and friends,Computer 19 (1986) 26–34.
[15] J. Y. Shi, Synergy v3.0 Manual, 2010.
[16] Introduction to xap 8.0 - gigaspaces, 2011. [Online] http://www.gigaspaces.com/wiki /display/XAP8/8.0+Documentation+Home.

21

[17] Introduction to javaspace technology, 2010. [Online]http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/.
[18] M. Frigo, P. Halpern, C. E. Leiserson, S. Lewin-Berlin,Reducers and other cilk++ hyperobjects, ACM Symposium

on Parallelism in Algorithms and Architectures (2009).
[19] G. Gibson, Reflections on failure in post-terascale parallel computing, in: Proceedings of 2007 International

Conference on Parallel Processing.
[20] A. S. Tanenbaum, M. V. Steen, Distributed Systems: Principles and Paradigms, Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 2001.
[21] P. H. Hargrove, J. C. Duell, Berkeley lab checkpoint/restart (BLCR) for linux clusters, Journal of Physics: Confer-

ence Series 46 (2006) 494–503.
[22] M. Shultz, G. B. R. Fenandes, D. M. K. Pingali, P. Stodghill, Implementation and evaluation of a scalable

application-level checkpoint-recovery scheme for MPI programs, in: Proceedings of Supercomputing 2004 Con-
ference, Pittsburgh, PA.

[23] K. K. H. Takizawa, K. Sato, H. Kobayashi, Checuda: A checkpoint/restart tool for cuda applications, 2009
International Conference on Parallel and Distributed Computing, Applications and Technologies (2009) 408–413.

[24] S. Laosooksathit, C. Leangsuksan, A. Dhungana, C. Chandler, K. Chanchio, A. Farbin, Lightweight checkpoint
mechanism and modeling in GPGPU, in: Proceedings of the hpcvirt2010 conference.

[25] CUDA-compute unified device architecture, 2010. [Online] http://en.wikipedia.org/wiki /CUDA.
[26] H. Rolf, High-performance computing and networking, in: W. Gentzsch, U. Harms (Eds.), The MPI standard

for message passing, volume 797 ofLecture Notes in Computer Science, Springer Berlin/Heidelberg, 1994, pp.
247–252.

[27] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, T. S. Woodall, Open MPI: Goals, concept, and design
of a next generation MPI implementation, in: D. Kranzlmller, P. Kacsuk, J. J. Dongarra (Eds.), Recent Advances
in Parallel Virtual Machine and Message Passing Interface,volume 3241 ofLecture Notes in Computer Science,
Springer Berlin/Heidelberg, 2004, pp. 353–377.

[28] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault, P. Lemarinier, O. Lodygen-
sky, F. Magniette, V. Neri, A. Selikhov, MPICH-V: Toward a scalable fault tolerant MPI for volatile nodes, in:
Supercomputing, ACM/IEEE 2002 Conference, p. 29.

[29] M. Koop, T. Jones, D. Panda, Mvapich-aptus: Scalable high-performance multi-transport MPI over infiniband, in:
IPDPS 2008 International Symposium on Parallel and Distributed Processing, pp. 1–12.

[30] W. Gropp, E. Lusk, Fault tolerance in message passing interface programs, Int. J. High Perform. Comput. Appl.
18 (2004) 363–372.

[31] J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps, Future Generation
Computer Systems 22 (2006) 303–312.

[32] E. N. Elnozahy, J. S. Plank, Checkpointing for peta-scale systems: A look into the future of practical rollback-
recovery, IEEE Trans. Dependable Secur. Comput. 1 (2004) 97–108.

[33] M. Herlihy, N. Shavit, The topological structure of asynchronous computability, J. ACM 46 (1999) 858–923.
[34] A. Fekete, N. Lynch, Y. Mansour, J. Spinelli, The impossibility of implementing reliable communication in the

face of crashes, J. ACM 40 (1993) 1087–1107.
[35] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., 1991.
[36] Y. Yang, Fault Tolerance Protocol for Multiple Dependent Master Protection in a Stateless Parallel Processing

Framework, Ph.D. thesis, Temple University, 2007.
[37] J. Y. Shi, Decoupling as a foundation for large scale parallel processing, in: Proceedings of 2009 High Performance

Computing and Communications, Seoul, Korea.
[38] A. M. Law, W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill Higher Education, 2nd edition, 1997.
[39] B. Szymanski, J. Y. Shi, N. S. Prywes, Synchronized distributed termination, IEEE Trans. Softw. Eng. 11 (1985)

1136–1140.
[40] F. Sun, Automatic Program Parallelization Using Stateless Parallel Processing Architecture, Ph.D. thesis, Temple

University, 2004.
[41] Multi-scale modeling and simulation, 2010. [Online] http://www.math.princeton.edu/multiscale/.
[42] High performance FPGA development group, 2010. [Online] http://www.fhpca.org/.
[43] J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Addison-Wesley,

2000.

22

Appendix A. Application Source Codes

23

/*---

Matrix Multiplication Master

---*/

#include <stdio.h>

#include <synergy.h>

double wall_clock();

double A[N][N],ituple_B[N][N], C[N][N];

char tpname[20];

double *ituple_A; /* [0] = grain size, [1] = values per rows ... */

double *otuple; /* [0] = grain size, [1] = values per rows ... */

main()

{

char host[128];

int i, j, k, received, ix, iy, tplength, status, G, T, R, P, res, tsd, x;

double t0, t1;

float F;

gethostname(host, sizeof(host));

t0 = wall_clock(); ix = 0;

// Open Tuple Space Objects

tsd = cnf_open("problem",0); res = cnf_open("result",0);

// Retrive command line arguments

G = cnf_getf(); P = cnf_getP(); // Granularity and P

if (G > N/2) { // Prevent over chunking

printf("Chunk size too large (Max: %d)\n",(int) N/2); exit (1); }

// Create test data

tplength = (1+N*N)*sizeof(double);

for (i = 0; i < N; i++) for (j = 0; j < N; j++) {

ituple_B[i][j] = (double) i * j;

A[i][j] = (double) i * j;}

// Insert Matrix B

sprintf(tpname,"B%d\0",0);

status = cnf_tsput(tsd, tpname, (double *)ituple_B, tplength);

// Insert Matrix A in groups

tplength = (1+ G*N) * sizeof(double);

if ((ituple_A = (double *)malloc(tplength)) == NULL) exit(1);

R = N;

while (R > 0) {

if (R < G) G = R;

R = R - G ; ituple_A[0] = G;

for (x = 0; x < G; x++) for (j = 0; j < N; j++)

ituple_A[x*N+j+1] = A[ix+x][j];

sprintf(tpname,"A%d\0",ix);

status = cnf_tsput(tsd, tpname, ituple_A, tplength);

ix += G; }

// Wait for results

received = i = 0;

tplength = (1+N*N)*sizeof(double);

if ((otuple = (double *)malloc(tplength)) == NULL) exit(1);

while (received < N) {

strcpy(tpname,"*");

tplength = cnf_tsget(res, tpname, otuple, 0);

G = (int) otuple[0];

ix = atoi(tpname);

iy = 1;

// Assemble results in C

for (i= 0; i < G; i++) {

received ++;

for (j=0; j < N; j++) C[ix][j] = otuple[iy++];

ix ++; }}

free(otuple);

// Send the termination

tplength = sizeof(double);

if ((ituple_A = (double *)malloc(tplength)) == NULL) exit(1);

ituple_A[0] = -1;

sprintf(tpname, "A%d\0",N*N);

status = cnf_tsput(tsd, tpname, ituple_A, tplength);

t1 = wall_clock() - t0;

cnf_term();

}

Figure A.12: MatrixMaster.c for Synergy

24

/*--

Matrix multiplication worker program.

--*/

#include <stdio.h>

#include <synergy.h>

char tpname[20];

double ituple_B[N][N];

double *ituple_A; /* [0] = grain size, [1] = values per rows ... */

double *otuple; /* [0] = grain size, [1] = values per rows ... */

double ita[N/2][N];

double ott[N/2][N];

main()

{

int G, tsd, res, i, j, k;

int ix, ia, ib, tplength;

// Open Tuple Space Objects

tsd = cnf_open("problem",0);

res = cnf_open("result",0);

// Ready to retrive Matrix B

strcpy(tpname,"B*");

status = cnf_tsread(tsd, tpname, (double *)ituple_B, 0);

tplength = (1+(int)N*N/2)*sizeof(double);

if ((ituple_A = (double *)malloc(tplength)) == NULL) exit(-1);

while (1)

{

strcpy(tpname,"A*");

tplength = cnf_tsget(tsd, tpname, ituple_A, 0);

ix = atoi(&tpname[1]);

if (tplength > 0) { // normal receive

G = (int) ituple_A[0];

// check for termination

if (G == -1) { // Send back so others can terminate

status = cnf_tsput(tsd, tpname, ituple_A, tplength);

cnf_term();

return;

}

// Translate the A group

for (i = 0; i < G; i++)

for (j = 0; j < N; j++) {

ita[i][j] = ituple_A[i*N+j+1];

ott[i][j] = 0; // Initialize matrix C

}

// Dig (with optimized nesting order: (i,k,j))

if ((otuple = (double *)malloc(tplength)) == NULL) exit(-1);

otuple[0] = ituple_A[0];

for (i =0; i < G; i++)

for (k =0; k < N; k++)

for (j =0; j < N; j++)

ott[i][j] = ott[i][j] + ita[i][k] * ituple_B[k][j];

// Assemble result tuple

for (i = 0; i < G; i++)

for (j = 0; j < N; j++)

otuple[i*N+j+1] = ott[i][j];

// Send result

sprintf(tpname,"%d\0",ix);

cnf_tsput(res, tpname, otuple, tplength);

free(otuple);

} else cnf_term(); // Done

}

}

Figure A.13: MatrixWorker.c for Synergy (with CPU kernel)

25

/**

* Matrix Multiplication Program

* Heshan Suriyaarachchi

* Revised by: JYS

**/

#include <stdio.h>

#include "mpi.h"

// JYS: NRA, NCA and NCB are defined at compile time

#define MASTER 0 /* taskid of first task */

#define FROM_MASTER 1 /* setting a message type */

#define FROM_WORKER 2 /* setting a message type */

MPI_Status status;

double a[NRA][NCA], /* matrix A to be multiplied */

b[NCA][NCB], /* matrix B to be multiplied */

c[NRA][NCB]; /* result matrix C */

main(int argc, char **argv)

{

int numtasks,/* number of tasks in partition */

taskid, /* a task identifier */

numworkers,/* number of worker tasks */

source, /* task id of message source */

dest, /* task id of message destination */

nbytes, /* number of bytes in message */

mtype, /* message type */

intsize,/* size of an integer in bytes */

dbsize, /* size of a double float in bytes */

rows, /* rows of matrix A sent to each worker */

averow, extra, offset, /* used to determine rows sent to each worker */

i, j, k,/* misc */

count;

struct timeval start, stop;

intsize = sizeof(int); dbsize = sizeof(double);

MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); numworkers = numtasks-1;

/*---------------------------- master ----------------------------*/

if (taskid == MASTER) {

printf("Number of worker tasks = %d\n",numworkers);

for (i=0; i<NRA; i++) for (j=0; j<NCA; j++) a[i][j]= i+j;

for (i=0; i<NCA; i++) for (j=0; j<NCB; j++) b[i][j]= i*j;

gettimeofday(&start, 0);

/* send matrix data to the worker tasks */

averow = NRA/numworkers; extra = NRA%numworkers;

offset = 0;

mtype = FROM_MASTER;

for (dest=1; dest<=numworkers; dest++) {

rows = (dest <= extra) ? averow+1 : averow;

MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);

count = rows*NCA;

MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

count = NCA*NCB;

MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

offset = offset + rows;}

/* wait for results from all worker tasks */

mtype = FROM_WORKER;

for (i=1; i<=numworkers; i++) {

source = i;

MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);

count = rows*NCB;

MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);}

gettimeofday(&stop, 0);

} /* end of master section */

Figure A.14: Matrix Master for OpenMPI

26

/*---------------------------- worker (slave)----------------------------*/

if (taskid > MASTER) {

mtype = FROM_MASTER;

source = MASTER;

MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);

count = rows*NCA;

MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

count = NCA*NCB;

MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

// JYS: Added Initialization

for (i=0; i<NCB; i++}

for (j=0; j<rows, j++)

c[i][j] = 0.0;

// JYS: Revised for optimized locality

for (k=0; k<NCB; k++)

for (i=0; i<rows; i++) {

// JYS: Removed for better locality: c[i][k] = 0.0;

for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];

}

//mtype = FROM_WORKER;

//MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);

MPI_Send(&offset, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD);

//MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD);

//MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, FROM_WORKER, MPI_COMM_WORLD);

} /* end of worker */

MPI_Finalize();

} /* of main */

Figure A.15: Matrix Worker for OpenMPI (with CPU kernel)

27

