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Abstract

This paper reports an application dependent network désigextreme scale high performance
computing (HPC) applications. Traditional scalable neknesigns focus on fast point-to-point
transmission of generic data packets. The proposed nefaoukes on the sustainability of high
performance computing applications by statistical midtijng of semantic data objects. For
HPC applications using data-driven parallel processirtgpk is a semantic object. We report
the design and implementation of a tuple switching networldata parallel HPC applications in
order to gain performance and reliability at the same timemédding computing and commu-
nication resources. We describe a sustainability modelaasichple computational experiment
to demonstrate extreme scale application’s sustaimahilth decreasing system mean time be-
tween failures (MTBF). Assuming three times slowdown otistezal multiplexing and 35%
time loss per checkpoint, a two-tier tuple switching framewwould produce sustained perfor-
mance and energy savings for extreme scale HPC applicaginog more than 1024 processors
or less than 6 hour MTBF. Higher processor counts or higheckpoint overheads accelerate
the benefits.
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1. Introduction

Traditional scalable network designs focus on the fastsfearof generic data packets. In
theory, packet switched data networks are sustainablecatabde since the packet transmission
performance and reliability improve as we add networkingmponents. Unfortunately, higher
level applications rely on application dependent commaitimtigy objects for their tasks. Except
for applications that can be easily partitioned into indejent parallel tasks [1], the semantic
differences between the application’s data objects and theelml/data packets make itficult
for higher level applications to gain the full benefits ofalattwork sustainability.

Unlike packet switched data networks, HPC program intesg&Pl) handle only two states
of each transmission: success or failure. The timeout (owk state is left to the program-
mer’s own devices. Due to the lack of alternatives, timesuteated identical to failure. Since
the probability of transient failures grows proportiogaib the component count in the pro-
cessing environment, from the applications’ perspectwvery transient error is a single point
failure. Any transient failure can bring the entire appiica to a complete halt. Restarting the
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application from the last failed point requires periodichéckpointing. Even with the optimal
checkpoint intervals, work (and energy) loss is inevitalldlgger losses are expected for larger
applications. These problems are most pronounced in HPIZappns. As we continue to grow
the component counts in supercomputers and high perforer@dnsters, the two-state-only time-
out practice ensures continued decline of applicationanrine between failures (MTBF) ([2],
[3]).

For HPC applications, it is commonly accepted that to achiggher performance, relia-
bility must be sacrificed. For higher application reliayiliperformance must be sacrificed [4].
Removing this limitation is generally considered verffidult.

Our research has found that sustainable solutions for lsygiems are feasible if tackled
by application types [5]. The idea is to apply statisticalltiplexing on application dependent
objects, if we can define them correctly. For HPC applicatjdhe first challenge is to identify
the unit of transmission that would be acceptable for allliappon types. Unlike traditional
HPC interconnection networks, a tuple switching netwouk& of transmission is an application
dependent data tuple. Since data parallel processing idl @stablished discipline ([6],[7] and
[8]), using the data tuple as the unit of transmission shbeldheoretically acceptable for all
HPC application types. The next challenge is to design allphmocessing paradigm and
architecture that can support statistical multiplexingieér data processing and transmission
leveraging multiple redundant computing nodes and netsvdl the End-to-End principle [9],
the HPC application’s APl must also be revised to includestagistical multiplexing semantics.

This paper reports the architecture of a tuple switchingvogk, its processing paradigm
and implementation details. Tuple-driven parallel preges decouples HPC programs in time
and in space thus allowing statistical multiplexing of coomitating tuples. Like the packet
switched data networks, the tuple switching network dfatiy mitigates the unknown states
of tuple transmission and processing by leveraging pahytnassive redundant networks and
computing nodes. If we consider the packet “store-and-dfotvequivalent to an HPC appli-
cation’s checkpoint, the tuple switching network is ideatiin structure to a packet switching
network [10]. Thus, given properly partitioned tuple (datarallel programs, a tuple switching
network could &ord high sustainability for extreme scale HPC applicatiensraging virtually
unlimited number of redundant networks and computing nodes

Tuple switching network marks a departing point from peatgrenance-only HPC designs.
Since packet processing is done “statelessly”, the prowpgmradigm is essentially a state-
less parallel processing (SPP) machine. Tuple switchimgar& supports both homogeneous
and heterogeneous processors and networking technalddiesefore it encourages continued
diverse developments of lower level processors and neswndkuding on-chip networks, many-
core and multi-core processors and multiple point-to-pimiterconnects and system-wide net-
works. A two-tier tuple switching network will be capableleferaging legacy HPC applications
for future fault tolerant extreme scale applications. Tersgthen our arguments, we also include
a mathematical sustainability model and a simple compuriatiexperiment to demonstrate the
expected application performance in extreme scales ofllsagecreasing MTBFs. Our results
show that assuming three times slowdown of the statisticdtiphexing layer, for an application
using 1024 processors with 35% time loss per checkpointyibetier tuple switched network
will produce sustained performance and energy savingyftess with less than 6 hour MTBF.
Higher processor counts or higher checkpoint overheadderate the benefits.

Since sustainable systems must deal with component faudtdong standing non-trivial
topic, to contain the complexity of discussion we focus anghstainability of HPC applications
in general. Programming examples are included in AppendiXtis paper is organized as
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follows: Section 2 is a survey of parallel processing payadi and their performance and fault
tolerance methodologies. We focus on their intrinsic fesdufor applications sustainability.
Section 3 discusses the motivation and the concept of sensatistical multiplexing. Section
4 presents tuple-driven parallel processing paradigmtid®®ed describes the architecture of the
proposed tuple switching network, its implementation asdsustainability model. Section 6
reports the design and implementation of a simple compmurtatexperiment in order to validate
the sustainability model with component failures. Sec@i@ontains discussion of the results and
their relevance to established HPC practices and benclsm&dction 8 contains the summary
and future directions.

2. HPC Programming Paradigms and Application Fault Tolerance

2.1. HPC Programming Paradigms

From programming style’'s perspective, there are two HP@mamming paradigms: ex-
plicit and implicit. Explicit parallel programming reqeis the programmer to specify in detail
how concurrent processes communicate with one anothes dllows the application to take
advantage of processing architecture’s features for higgdormance. There are two popular
process-to-process communication methods: message@db4Pl) [11] and shared memory
(OpenMP) [12]. Detailed instructions are expected by thaieit parallel processing system for
executing the parallel programs.

In the last two decades, explicit parallel programs haveatestnated very high performances.
They have become the international standards for supengi@mpenchmarks (httpwww.top500.0rg).
For extreme scale applications, however, we still face ¢flewing challenges:

e Programming complexity is too high. An application prograer is required to be a do-
main knowledge expert, familiar with supercomputer hangvetetails and a skilled coder.

e Increasing failure rate. As supercomputers grow in sockants, the application mean
time between failure (MTBF) is fast shrinking. The explipitogramming requirements
make failure prevention for large scale applicatiorfdilt.

e Energy dficiency. Increasing failure rates force the applicatiorfsgquent checkpoint and
restarts (CPR). For extreme scale applications, even héthgreenest” processor designs,
the CPR overheads would be cost prohibitive.

Implicit parallel programming hides the process-to-pssiateraction from the programmer.
The programmer only specifies the rules for data generatiohcansumption. The runtime
system is responsible for the interactions between progiramd data. Changing processing
granularity involves sending outféiérent number of working assignments. No recoding should
be required for granularity tuning unless the tuning ranggeds to cross the iteration boundaries.

To date, there are approximately fivefdrent implicit parallel programming paradigm im-
plementations:

e Hardware-based. The very first data parallel machines, aadhe MIT Tagged Token
machine [6] and the Manchester dataflow machine [13], usedwsae data matching
circuits to activate programs.
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Figure 1: Price History of Auctioned Cloud Resources (Anmazom: 35-11/2011).

e Compiler-based. This approach was designed to avoid thencmication “bufering
overhead” by generating pseudo dynamic behavior of datahima using a code gen-
erator [14].

e Tuple space server-based. This approach has the advaritegeeoof programming and
performance tuning but carries the extra communicationtmaads without exploiting their
full potentials ([15], [16] and [17]).

¢ High-level programming language-based. Cilk [18] is a kigkvel parallel programming
language. The philosophy behind Cilk is that a programmeulshconcentrate on struc-
turing her or his program to expose parallelism and expbaiality, leaving Cilk’s runtime
system with the responsibility of scheduling the compotatd run dficiently on a given
platform.

e Infrastructure-based. The Hadoop system [1] was design&tkle data intensive large
scale loosely coupled applications. Its applications atked “map-reduce” applications
that use “divide-and-conquer” algorithms to complete exiely large jobs quickly and
reliably. Its runtime system tracks and recovers faileigagitomatically.

Implicit parallel programming has reduced programming ptaxity and the potentials to
offer cheaper fault tolerance. However,to date, except foHa@oop system, most implicit
parallel programs have yet to demonstrate superior pegoces.

2.2. Fault Tolerant Computing

Applications that can sustain frequent failures can redateal computing costs. Figure 1
shows the history of bidding prices of high performance GR&flances with 4xlarge memory in
May 2011 at the Amazon cloud. An out-of-bid failure occursamtan instance is acquired by a
higher bidder.

Figure 2 shows the relationship between the applicatioptsne and bidding prices. For
example, assuming zero CPR overhead, for an applicatiarirneg 10 hours of computing time
using 100,000 instances, the bidding price of 56 ¢glaptg/instance would encounter one out-
of-bid failure on average, or MTBF 5 hours. Bidding 53 c#dmtsirinstance would generate
frequent out-of-bid failures (MTBF) in less than an houeinal. For this task, the costftBrence
is about $30,000.

There are also hardware failures. Although componentrailua single modern processor
is a small probability event, when massively many procesam networked together, the cumu-
lative dfects are formidable. Garth Gibson observed that despiteeadiévelopment slowdown
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Figure 2: Uptime Probability vs. Bidding Prices.

of faster cycle processors, the number of sockets (coresupercomputer would double every
year or so. Figure 3 shows three growth models that doubtdesoounts every 18, 24 and 30
months [3].

The Petascale Data Storage Institute (PDSI) at Carnegi@ivehiversity (http//www.pdsi-
scidac.org) has collected and analyzed historical hardware failute dad observed the follow-
ing [19]: the hardware failures lie in between a rate of 0.8 &5 per year per processor
regardless of the configuration of the machine. Since theréarate of the CPU itself is very
small, the failures can be assumed to be tied to socketsr ritdue processors. Figure 4 shows
the projected mean time to interrupt (MTTI) for the threels&igrowth models in Figure 3.

Currently, the lack of scalability in HPC applications haiven their MTBFs down to 60
minutes [2], known as the “one hour barrier”. This meansfibiatertain large scale applications
today it is not possible to have a full hour failure-free rusing the current combination of
hardware and software. The problem worsens if the appdicaip scales in size.

To preserve the intermediary results, checkpoint-re§@PR) [20] is necessary. CPR re-
quires periodical savings of application’s intermedidtges. When the application crashes (any
transient component failure can cause this to happen), weestart the application from the last
checkpoint, thus preserving the energy that had genetagee@sults.

For HPC applications, there are two kinds of CRBigstem levedndapplication level System
level CPR is provided by the parallel programming API (Apgption Programming Interface)
and its processing environment that allows the applicaifogram to call for a checkpoint using
a single instruction. Recovery is automatic. The Berkal®L.CR library [21] is an example
of system level CPR. Application level CPR [22] is providgdthe programmer who must use
higher understanding of the program to find the suitable timefeggpiency to save critical data
sets. The programmer is also responsible for the codingicapion recovery after failure.

In a typical many-core or multi-core parallel system, thetharocessor must use shared
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memory to communicate with multiple sub-processors. Aeamwskevel checkpoint must save
the memory contents accessed by all processors. At thenpri@se, this type of checkpoint is
considered a non-trivial challenge ([23], [24] and [25]).

Existing standard HPC frameworks are explicitly parabelgh as the message passing stan-
dards [26] and shared memory standard OpenMP [12]. Vaiiiacitsde OpenMPI [27], MPICH [28],
MPICH-V [2] and MVAPICH [29]. These systems can support dpegnting the state of indi-
vidual nodes using the BLCR library and for checkpointingd egxconstructing single or multiple
level communication states using sophisticated techsi¢f@e], [2]).

In practical production codes, only application level CBRvidely used. The optimal CPR
interval can minimize the overall running time and save thergy consumption by committing
the minimal number of checkpoints. Finding and implemamtire optimal CPR interval requires
non-trivial calculations ([30], [31]). Even with the optahintervals, time and energy losses are
inevitable. For general purpose HPC, fault tolerance dessaonsidered very flicult [32].

Since CPR relies on the stable storage for backup data, dssyme on storage is mounting.
Even though hardware technologies have improved circlighidity from historical 0.25% per
year per socket to 0.1%, Garth Gibson [19] predicted thewatig in 2007:

e Top500 supercomputers will double peak FLOPS annually.
e Cycle time will be flat while number of cores on chip grow on Me's Law.
e Mean Time To Interrupt (MTT]I) failure rate will be up 25% to%0per year.

The actual failure rates had met and exceeded his predafienthe introduction of general
purpose GPU (GPGPU) for HPC applications.

It is commonly recognized that none of the above mentionelt falerance methods would
be capable to contain the rapid growth of failure rates.

In contrast, we observe that the low level point-to-poirked switching network can tolerate
multiple component failures and can gain performance aliabikty at the same time if includ-
ing more switches and routers. A curious question is: Whytees deliver HPC application’s
sustainability using the same techniques?

3. Motivations

The structural advantages of packet switching networkstrererimary motivation of the
reported methodology. Unlike HPC application networksaakgt switching network gener-
ally allows unlimited scalability in performance and réliity as the network component count
increases. Since all HPC applications must involve comuoatiuns, if we can re-formulate
the HPC computing failure problem as a communication failroblem, the sustainable HPC
application challenge may have a practical solution. Wel gaiecial attention to the timeout
treatments in HPC applications. Due to the lack of easyratares, an HPC application trans-
mission timeout is treated as a fatal error. Therefore, thigesapplication will halt on every
transient component failure. Since the number of trans@hires increases proportionally as
the system grows its component count, HPC application’s MTRist decrease accordingly.

To decouple the transient component errors from a HPC aijdit, the application pro-
grams should be decoupled to allow statistical multiplgxdn the exchanged data. Unlike the
packet switching networks, the sustainable HPC applinatietwork requires statistical multi-
plexing of redundant computing and communication comptmenke in the packet switched

7



Message

Sender 4) Receiver

Source 9 Destination
P

Figure 5: Messaging network and packet-switching data owtw

network, the HPC re-transmission logic must also be coupitid idempotent processing plus
a statistically multiplexed infrastructure. These cdnsti the core of the proposed tuple switch-
ing network. Historically, the counter-intuitive storadkforward packet switching network has
helped to deliver the most sustainable man-made architectinhuman history: the Internet.

The key concepts in a successful sustainable applicatietvgork seem to include three
elements:

e Find a service dependent unit of transmission.

e Develop an end-to-end protocol with re-transmission aedhigotent processing based on
the unit of transmission.

e Develop a statistical multiplexed infrastructure basedhenunit of transmission.

Without statistical multiplexing, the actual state of a counication task is theoretically
not confirmable ([33], [34] and [20]). With statistical miplexing, the probability of suc-
cess increases proportionally as the number of redundampuating and communication paths.
The re-transmission protocol includes implicit transistdrages for the communicating data.
Therefore, increasing the networking component countsongs the application network’s per-
formance and reliability at the same time. Although the pacwitching overhead is significant
compared to direct circuit-switching protocols, the eaogmf scale in low cost fault tolerance
and unlimited scalability of packet switching concept h&ae=n proven féective and widely
accepted in practice.

One wonders why the low level data network benefits cannotelitetbexploited by higher
level applications without structural changes at the apibn level. The answer is that they
operate on dferent units of transmissions (Figure 5). Since the mutuakination between
the HPC application data and the low level packets is near [8%], although the lower layer
packets are automatically multiplexed (if packet switgh#tte complete application objects are
only transmitted once. Thus they are semantically idehticdatagrams in low level UDP data
networks. By the end-to-end principle [9], not only a stataly multiplexed infrastructure is
necessary, but also the application programming interfa&¢) must include the semantics of
statistical multiplexing for the application to be sustdiie.

In other words, we are interested in an “infrastructureebasmplicit parallel programming
paradigm, we call “tuple switching network”. The proposgdtem will rely on the application
generated data flows to dispatch parallel programs autoatlgti The semantic statistical multi-
plexing infrastructure ensures zero single point failurd application sustainability at the same
time.



Ultimately, since the application semantic network desithe final results of the HPC appli-
cation, we argue that without semantic statistical mgtipig, it is not possible to eliminate all
single-point-failures in the applications network. Andsitllso not possible to gain performance
and reliability at the same time as we add resources.

In comparison to the Hadoop system [1], the proposed tupitelsing network is a general-
ization that is capable of extreme scale generic HPC apjgitsand extreme scale data intensive
applications.

4. Tuple-Driven Parallel Processing

In a tuple-driven parallel processing environment, a@piocc dependent data tuples are
stored and forwarded by a tuple space infrastructure. Aatmmvorker failure protection can
be provided by the tuple space implementation to allow aenetd tuple to assume “invisible”
status until its processing is completed. If the correspandesult does not arrive in time, its
“invisible” status can be reversed to “visible”, allowinther available computing nodes to com-
pete for the unfinished task [30]. In view of the tuple switghnetwork, this mechanism satisfies
statistical multiplexing requirement analogous to themuétic re-transmission of TCP packets.

The tuple-driven parallel processing environment hasdbatical semantics of a data driven
parallel processing model. This saves us from providindehsibility arguments.

Since most high power many-core and multicore processersxalusively used for parallel
workers, this allows us to use tuple parallel programmingtet the system level many-core
and multicore processor checkpoint challenges.

Unlike explicit parallel programming methods, tuple-@tivparallel programming relies on
communicating tuples to automate task activation (alskedé&firing” in literature [6]). This en-
ables automatic formation of SIMD, MIMD and pipeline clustat runtime [6]. The net-benefit
of this feature is automatic “hiding” of communication latées (or “work stealing” [18]). For
extreme scale HPC applications, these qualities help madiad parallel programming complex-
ities.

In addition to “stateless” workers, a practical HPC apgi@mamust also contain “stateful”
masters (programs responsible for delivering the senehtidentical results as sequentially
processing the same data). The masters must still be chietégdo preserve the intermediate
results. Itis notimmediately clear if the overall compgttime with multiple master checkpoints
(although less frequent and potentially smaller) woullll @éliver sustainable savings given the
potentially slower tuple switching network.

A tuple-driven programming environment forces the prograars to focus on data partitions
to expose parallelism in proper granularity. The data paniing strategy determines the ultimate
deliverable performance. There is no need to manually nodattip concurrent tasks.

The tuple-based API does not have a fixed process-data bindiherefore, it is possible
to statistically multiplex the application data in betweebpecifically, if the tuple-based API
contains re-transmission and idempotent processing faicagpion tuples, supported by a robust
tuple space implementation, all-around scalability mesatiainable.

The tuple-driven applications require the processingrenvinent to support a tuple space
abstraction for matching computing tasks at runtime. Tihé source of additional communi-
cation overhead which almost doubles the cost for everctinter-processor communication
request. However, these overheads have enabled new imppadssibilities for extreme scale
applications:
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Figure 6: Tuple Switching Network.

1. The possibility to deploy multiple interconnection netks in parallel, thus relieving the
pressure on the single interconnection network to allowemmemputing nodes in parallel
and to support diverse communication patterns.

2. The possibility to &fer automatic worker fault tolerance, thus reversing theatieg gfect
on application MTBF and delivering sustainable perfornesnc

The tuple-based API also makes it easier to seamlesslypgocate multiple heterogeneous
processor types, such as single-core, many-core and or@lf@PUs, DSPs, and GPGPUs. It can
also include legacy HPC applications. This is the basishfeproposed two-tier tuple switching
system.

Like the Internet, a tuple switching-based two-tier netvoan potentially deliver scalable
performance, scalable availability and enerfficeency at the same time.

The following sections reports the design and implemeurtadif tuple switching network
and findings based on an experimental tuple-based statistigltiplexing project named Syn-

ergy [36].

5. Tuple Switching Network and Stateless Parallel Processing

5.1. Architecture

Tuple switching network requires a data-driven parallebgsssing paradigm. Unlike existing
command-driven paradigms, data parallel programs must@sgero global state. In this sense,
data-parallel programs can be considered statelesselgmalgrams (SPP) [37]. Figure 2 shows
the conceptual architecture of the proposed tuple switchatwork.

In Figure 2, SW represents a collection of redundant netsvotkVR stands for Unidirec-
tional Virtual Ring — a fault resistant (self-healing) viel communication channel that links all
nodes for an application. Each node is a standalone prauefssame particular type. Each node
has multiple network interfaces, local memory, disk andjlgror multiple processing units; it
can also host multi-core or many-core processors.

The global tuple space is implemented as follows:

1. Datarequests are matched locally. Unmet requests ttaeeigh UVR for global match.
2. All nodes participate in data matching in parallel.
3. All networks participate in direct exchange of matchethda
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These functions are implemented in a single daemon thatanresach node. Like typical
peer-to-peer systems, these daemons communicate withottzehto form a single consistent
HPC machine image using all runtime available resourcesh Haemon implements a local
tuple space for programs running on the node. Global datahimaf requests travel by UVR.
The actual global data transfers are done in parallel viathiéple redundant physical networks.
Running applications with optimized grain sizes shouldehanly a few tuples residing on each
node. At the application level, all nodes participate inatistically multiplexed global tuple
space. Programs use the tuple space APl to communicate Wotahdaemon which in turn
communicates with other daemons to complete data acauisitiparallel if the request cannot
be met locally. Each application exploits multiple redumid@etworks automatically to counter-
balance the inherent speed disparity between computing@ndunication components. There
is no single point failure for such HPC applications. Usingimary broadcast protocol, each
UVR can scale to include millions of nodes with no more t¥{lyP) data matching complexity.

Failure containment for multiple multicore and many-coregessors is now feasible by
leveraging the automatic “worker fault tolerance” withamtolving low level memory CPR.
Unlike traditional supercomputing environments, theistiaal multiplexed semantic network
promises enhancing application performance and relighilithe same time by adding redundant
computing nodes and networks.

Figure 3 makes a conceptual comparison between the exglidiimplicit application net-
works, wher€l stands for “tuple” which is the unit of transmission of the@Gfemantic network.

In Figure 3, the explicit parallel programming API produeestatic application network.
Each transmission is semantically identical to a UDP datagn lower level networks: it only
gets sent once. The implicit parallel programming API alidie tuples in the semantic network
to form TCP-like virtual circuits with automatic re-transsion and idempotent processing by
the tuple switching infrastructure (tuple space).

5.2. Application Development

A data-driven HPC application will use only data tuples foter-program communication.
The Tuple Space abstraction [8] is a natural representation
The tuple space API contains three data manipulation pviesif37]:

1. Put(TupleName, bter): This call inserts the contents of ‘fier” with TupleName into
the space.
2. Get(&NameBiier, &buffer): This call retrieves and destroys a tuple with a matchage
in NameButer.
3. Read(&NameBtier,&buffer): This call only retrieves a tuple with a matching name in
NameBiuter.
11
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Figure 8: Logical View of SPP Programming.

The “&” sign represents “access by reference” meaning tiatariable NameBier’s con-
tents can be altered to hold the value of a matching tuple rsamatime.

Since diferent processor types and processing environments retjtfeeent coding (MPI,
OpenMP, CUDA, etc), each worker can contain multiple impaiations for the same kernel in
order to adapt itself to the available resources at runtime.

Figure 4 illustrates the programmer’s view of tuple spaaglpel processing. Each applica-
tion will be decomposed into multiple masters with each oesjble for a computing intensive
kernel in the application. Each master program is matchéu avsingle worker program. Each
worker program will run automatically on multiple availaliieterogeneous processors.

The master program uses the “Put” command to send unpratessk assignments to the
tuple space. It uses the “Get” command extracts the results.

The worker program repeats the “Get”, “Compute” and “Putjsence for as long as there
are assignmenttuples. Since the worker codes are progrdtoragtomatically adapt to fierent
processors, it will run on all nodes accessible at runtintee dpplication terminates when there
are no more assignment tuples.

The correct user data handling relies on statistical mekipg of redundant computing and
networking resources. Without an infrastructure suppbuieit of transmission, it is not pos-
sible to implement statistical multiplexing correctly mgiexplicit parallel programming APIs
or compiler-based implicit parallel programming methasissh as the approaches taken by the
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Linda project [8] and others [18].

5.3. Sustainability Analysis

In this section, we assess the application’s sustaingahijitits expected time savings using
“worker fault tolerance”, as promised by the statisticalliplexed tuple switching network.

To do this, we build two models (based on [30]) for a typicalGH&pplication with check-
points. The first one is for explicit parallel programming®ms where any component failure
would cause the entire application to halt. The second isrfplicit parallel programming, where
only master failure or 100% worker failure would halt the Bgation. We then compare the ex-
pected processing times using the respective optimal gloétkintervals. It is worth mentioning
that unlike [31] where the optimal checkpoint interval migtas based on a system exhibiting
Poisson single component failures, the following modetsiage multiple Poisson component
failures.

According to [30], we define the expected computing time Viailure, as follows:
e to: Interval of application-wide checkpoint.
e «: Average number of failures within a unit of time which folle Poisson distribution.
e Kp: Time needed to create a checkpoint.
e K;: Time needed to read and recover a checkpoint.
e T: Time needed to run the application without checkpoints.
Further, we define:

e a3 Average number of failures of critical (non-worker) elarmhéailure in a time unit
which follows Poisson distribution.

e ay:Average number of failures of non-critical (worker) elamilure in a time unit which
follows Poisson distribution.

Thus,a = a1 + a>.
Assuming failure occurs only once per checkpoint interval all failures are independent,
the expected running time per checkpoint interval with any processing element failsr

t
E = (1 - ato)(Ko + to) + ato(Ko + to + Ky + EO)

The expected running time per checkpoint interval with veoffiailure tolerance will be:

t
E = (1 - a’to)(Ko + to) + a’]_to(Ko + to + Kl + EO) + algto(Ko + t() + X)

whereX = recovery time for worker time losses per CPR. We can then coene difer-
encesE’ - E, as follows:
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t
E-FE =(a - al)to(Ko + to + Kl + EO)
— aoto(Ko + to + X)

f
=aoto(Ko + to + Kg + EO - Ko —tg— X)
f
=azto(Ky + EO - X)

Since the number of workers is typically very large, the sgsiare substantial. The total ex-
pected application running tinte;r without worker fault tolerance is:

T t6
Er = —(Ko + to + a(toK1 + 3))
to 2

We can now compute the optimal checkpoint interval:

dET Ko [07
bkl PR
to ( t(z) * 2)
2K
to= (—0)
a

The total application running timér with worker fault tolerance is:

’ ’

K at ast
Er = T(L+ -2 + aKy + —2 — 22Ky — —2 + aX)
t 2 2

The optimal checkpoint interval with worker fault toleranis:

dET T Ko a — ap

ty t2 2
2Ko
a—ap

)

th =

For example, if we set the checkpoint intergal= 60 minutes, the checkpoint creation and
recovery timeKy = K; = 10 minutes, and the average worker failure time gss 30 sec or
0.5 minute, the expected savings per checkpoint under anyesimyker failure is about 39.5
minutes (or greater than 50% savings).

t
E-E @um+§—m

(10+ 30— 0.5)
= 395,

becauser,ty = 1 (single worker failure).

On the other hand, if the MTBF is 3 hours in a system of 1024 ¢ssars, this givesty =
180x = 1 ora = 1/180. Thusa; = 1/(180« P) = 1/184, 320. The optimal checkpoint interval
for a system with a single master and 1024 workers would be:

t) = (ﬁ) = V2x 10x 184320= 1,920
G 14
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Figure 9: Sustainability analysis: Expected Elapsed TimeWTBF (P= 1024, Tuple Space slowdown facter3).

This means that for this HPC application using 1024 nodés nibt necessary to checkpoint the
master unless the application running tifihés greater than 30 hours.

In terms of energy savings, for an application that needsdg®@shcomputing time, the total
energy savings would be about 5 Megawatt hours (1024 processth 187 watts per many-core
GPU processor).

Assuming the statistical multiplexing (tuple space) sloowd factor= 3, Figure 5 shows
the expected time saving$ Y versus the application MTBFs as the CPR overhead (Chegkpoi
Time/Running Time) varies from 5%, 15%, 25% to 35% for a procestb0@4 nodes. In Figure
5, higher CPR overheads or lower MTBFs deliver bigger pentorce advantages.

These figures also suggest the practical break point betwsiag single tier mono-scale
simulation and two-tier, possibly multi-scale simulatiofhe tuple switching network should
be introduced in the second-tier to contain the risks of lotiex failures. The lower tier is a
collection of concurrently running legacy HPC productiades solving multiple subproblems.
Since multicore and many-core processors are almost éxelysised for workers, the proposed
paradigm d&fers system level multiple multi-coiany-core processor fault tolerance without
involving checkpointing low level shared memories.
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6. Computational Experiment

6.1. Experiment Setup

Application. For simplicity, we use matrix multiplication to simulatestcompute intensive
core of a large scale time marching simulation applicat®ren twoN x N matricesAy andB,
the experimental system computesatrix products as follows: (& i < Kk):

C=AXB,
A =A_1xB

C is the final solution. We then created one MPI and one Synengleimentation for the same
application. Both implementations include a master and rke&ro
For the MPI program, granularity is set $ (P=number of processors). The Synergy pro-
gram granularity tuning range is the top loop of the thredatk#erations (see Appendix A).
Objectives. We would like to compare the actual running times of MPI agde3gy imple-
mentations with and without failures. We record the follogrinformation:

1. Elapsed time without checkpoints.
2. Elapsed time with checkpoints without failure.
3. Elapsed time with checkpoints and recoveries with ig@dailures.

Processing Environment. We used the Lincoln cluster by NCSA, hosted at Teragrid (wenagrid.org),
for the reported experiments. The Lincoln cluster cons$t$92 compute nodes (Dell Pow-
erEdge 1950 dual-socket nodes with quad-core Intel Haoper2.33GHz processors and 16GB
of memory) and 96 NVIDIA (many-core) Tesla S1070 accelaratdts. Our application al-
lows 20 Tesla units. Each unit has 8 CPUs with 2.33 GHZ eacBRBlLéhemory total, and 4
Tesla S1070 cards. Each unit provides 345.6 gigaflops ofldeuriecision performance. The file
system is Lustre with 400 TB disk storage shared with anathester (Abe).
Development Software. All experiments run in Red Hat Enterprise Linux 4. The GPde®
use CUBLAS (CUDA 2.2) and Intel €+ compiler 10.0 for Linux.
The parallel processing environments include:

e OpenMPI (httpy/www.open-mpi.org
e Synergy v3.0 (httg/spartan.cis.temple.etynergy)

Failurelnjection Method. The minimal number of processors we would like to validate o
calculations with is 1024. We distribute the failures to dp¢éimal number of GPU units for each
environment.

We use a Poisson random number generator, as in [38], torpetfi@ injection of failures.
The failure injection algorithm accepts variable MTBFs.

6.2. Computation Experiment and Results

In practice, the checkpoint creation tirkg is different for MPI and for Synergy. For MPI,
the checkpoint must include the global state of all involvedies. For Synergy, the master
checkpoint only needs to include local states. Multiple texaswill checkpoint in sync and in
parallel using a distributed synchronized terminatiorogtgm [39].

The recovery time; is also diferent. For MPI, the recovery time covers reading of a glob-
ally saved state. For Synergy, the recovery time includesdaing multiple masters reading
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Figure 10: Performance without checkpoint and failure<(0,000; Rounds: 10).

the multiple saved states in parallel. For simplicity, wasider the dierences negligible and a
single master is necessary.

The matrix multiplication kernel is programmed using CUDAe€lar library CUBLAS. It
is included in the CUDA 2.2 toolkit. The CUDA kernel is “wrapg” by the Synergy calls as
depicted in Figure 4.

GPU programming is very sensitive to the change in the geaityldue to loading overheads.
Fine tuning granularity produced counter-intuitive réstghown in Figure 5% = 5), where MPI
granularity is fixedy.

Figure 6 also shows that the best time to solution for the Niffdlementation is 19 GPU
workers (granularity= 600). The best time to solution for the Synergy implemeatsis 5 GPU
workers (granularity= 1000).

Both the MPI and the Synergy workers can be programmed tot dol@ither CPU or GPU
processors at runtime based on the availability of a freécdevin this experiment we used
workers that only finds GPU devices, locking it and using iiéthe matrix computation.

As mentioned earlier, system level CPR for multiple GPUsisiasolved challenge for MPI
codes. We had to use application level checkpointing. TheesSaPR code is used for Synergy
master, where worker fault tolerance is provided by autaniahadow tuple” recovery [37].

The computation results were recorded runs with the folgygarameters:

e N =10,000.

e P =50rP =19 (the best time to solution for Synergy and MPI respeativel
e K =400 (rounds).

e Kpis measured 10 seconds.

e tp andtj(optimal CPR interval) are calculated automatically focteacenario.

The failure injection algorithm is tunable forftBrent MTBF values. We then distributed the
projected failures (based ¢h= 1024) across all processing nodes statistically.
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Figure 11: Running time with failures. N 10,000; Rounds: 400; P= 5(Synergy); P= 19(OpenMPI).

Figure 6 shows the performancdfdrences between OpenMPI and Synergy without check-
points. For Synergy, the shadow-tuple capability is alwegabled. It shows that for small
number of GPU units (5), Synergy out performs MPI due to glanity optimization. MPI beats
Synergy performance at largBrvalues. For the same amount of work, MPI program needed
more GPU resources.

As mentioned earlier, our application level checkpointdinwrites the matrices to the stable
storage synchronously (to avoid restart errors). Otherwig would lose the latest checkpoint
due to the disk caching. All checkpoints are executed at thmamhically calculated optimal
intervals according to the number of processors used antighessions in Section 5.

Failure were injected by a “killer” program. The killer pn@gm runs at the end of each MTBF
cycle (Figure 6). It then kills a random running process.

For the MPI run, each random Kill is “all or nothing”. This nmessthat if the “killer” needs
to terminate any process, the master must reload the laskjpbiat file and lose all the rounds
computed since. Since the reloading is mandatory, thigpgatoduces statistically equivalent
results as foP = 1024.

In the case of the Synergy run, the master CPR process isasitnilMPI except that the
failures are statistically distributed as master or wofkéures. A master failure will follow the
same process as MPI, but a worker failure does not stop tmermynOnce a worker is killed the
work tuple that was assigned to this worker reappears inuple space after a short delay. A
new computing node will pick up the load. This allows the @dszromputation to continue with
limited time loss (variabl& as discussed in Section 5).

Figure 7 shows the computational results for OpenMPI ance&ynwith injected failures.
We accelerated MTBFs to explore the potential impacts dfidridailure rates. The results are
consistent with the sustainability model predictions.

7. Discussions

This paper reports a tuple switching network for sustai@a@neric HPC applications at
scale. We proposed an Internet-like two-tier tuple switghnetwork in order to mitigate the
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increasing risks of massive component failures and to gaifopmance scalability at the same
time.

We argue that explicit parallel programming is not appraferfor extreme scale applications
for its inability to handle uncertainties. The current stard benchmarks are the best practices
of explicit parallel programming. These results, howegan be leveraged for extreme scale
application if integrated with the proposed tuple switchiretwork at the higher level.

The tuple switch network also brings the possibility of plateperformance optimization.
Finding the optimal processing granularity is a tricky gesh for explicit parallel systems like
MPI and OpenMP, since every change in granularity requaesoding. In implicit or dataflow
environments, parallel programs and their data are deedupkime and in space. This gives the
application network layer a chance to handle uncertain@zanularity change does not require
re-coding if the tuning range is within the same loop indejin&ar coarse-to-fine grain optimal
granularity finding process (outermost logpinnermost loop) can identify the optimal partition
depth (tuning range). Since the ratio between aggregateatimg and communication directly
affects the optimal partition depth, instrumentation and grpentation are also required. For the
matrix multiplication example above, we found the optimargularity for the NCSA Teragrid is
still the top loop (see Appendix A). Fine turning the groupfactor within the top loop produced
better performance than its MPI counterpart whea B. Note that the Synergy performance
includes the checkpoint (shadow tuple) overheads for alkeronodes.

In anticipation for future technology advances, idealhg tbest” parallel programs should
be able to change processing granularity without changig @t all, since hand-tuned paral-
lel codes will quickly lose their performance advantage@msas the processing environment
changes. The need for tunable and sustainable HPC codeedsmbs more evident if we want
to leverage auction-based cloud resources, since apphisahat can tolerate higher out-of-bid
failures will cost far less than those that do not. To minienimanual work, we have also stud-
ied an automatic data parallel code generation method assngple parallel markup language
(PML) [40] for cross level performance optimization.

If we consider each packet fiar as a CPR point for data service, we can then envision ex-
treme scale applications using the same strategy by elimisstate spreading” and by statisti-
cally multiplexing semantic communicating objects. Thenstard benchmarks are still relevant
for they have set the baseline of the best performing “fatestbdUsing the proposed two-tier
framework, we can deliver extreme scale performances tigtitally multiplexing multiple “fat
nodes” and multiple interconnection networks that linkithe

The advent of auction-based cloud computing further stiteslthe need for sustainable HPC
applications, since better costs are delivered by lowedibglprices (higher out-of-bid failures)
(Figurel). With tuple switching framework, it is possibtedefine the “optimal” cost for a given
HPC application based on a given budget, time or both.

Sustainable applications are also enerfigient. The savings come from drastically reduced
CPR overheads and improved resourtieiency. The proposed tuple switching network touches
power dficiency, programming complexity and failure tolerance atpef extreme scale HPC
applications. As hybrid HPC systems have demonstrated sfidceency and costféectiveness
than homogeneous systems [3], the proposed framework fitsniethe technology evolution
trajectory.

For some applications, such CFD (computational fluid dyrajréodes, to gain application
sustainability, the mutually dependent stateful workens loe converted to stateless workers by
translating the “neighboring” dependencies via automaipté matching. The application will
lose some communicatiorffiziency (as addressed in the paper by the slowdown factar)t bu
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will gain overall sustainability.

There are also more potentials for productivity gains. Ba@neple, since explicit parallel
programming is easier, it may not be necessary to manuaitg e tuple switching “wrappers”
for legacy applications for building the extreme scale eyapilon. Automated tools have been
experimented using Parallel Markup Language (PML)[40]. rdeforts would be needed to
study how to compose multi-scale codes using the propogee space parallel programming
environment [41]. This also applies to the GPGPU applicetiohere skilled programmers
would focus on producing the optimized GPU kernels whileviih@pper would be automatically
generated.

HPC application batch scheduling would also be greatly Bfiag since the tuple-driven
applications will exploit and optimize all available resoes automatically. Similar to map-
reduce applications, there is no need to compute soplieticasource scheduling policies. Non-
stop HPC application would become a reality where companeant be takenfliine for repair
without shutting down the running applications. Resoufieiency would further improve since
we can now ford the optimal processing granularity and optimal cheakigotervals.

Future studies would also include research on diverseegifns with diferent communi-
cation patterns. Automatic matching of interconnectiotwoek topologies with runtime com-
munication patterns would also be possible.

With commercial cloud computing a reality, minimal cost HB@nputing is possible using
auction-based resources. The tuple switching network camfartably handle the out-of-bid
failures to deliver more costfiective solutions under practical constraints. Optim@atnodels
are needed to help users to calculate the best strategy tionimaxhe yield of a given budget
or time. Since the tuple switching network is very similathie packet switching network, with
hardware advances in high performance circuits [42], b #dspossible to develop hardware
support for application specific networks.

8. Conclusions

The fundamental result of the reported tuple switching oekvis the use of statistical multi-
plexing of application data to solve the seemingly “impbksiscalability challenge of extreme
scale HPC applications. We have shown that the powers @ftstahultiplexing can be leveraged
to tame the nagging HPC sustainability challenges that traubled us for a long time.

Without statistical multiplexing both computing and conmmuaation components, it is not
possible to eliminate all single-point-failures in the Bpgtions networks. And it is also not
possible to gain performance and reliability at the same tisi\we add resources.

The proposed tuple switching network is a generalized stifaegture-based implicit parallel
processing paradigm. In comparison to the Hadoop systentufiie switching network is more
general in that it is capable of extreme scale HPC applinatémd extreme scale data intensive
applications (with much lower overheads).

Our computational experiment demonstrated the practeaibility that confirms with the
greater implications described in the sustainability nhiode

Architecture-wise, the proposed tuple switching netwaak merely removed the structural
impediments for sustainable HPC applications. Researthstér networks and processors are
still needed to shorten communication and processingdaenLike the packet switching net-
work, the tuple switching network can only up scale bandwatd reduce latency under over-
loading conditions. The architecture, however, is poiseslibsume future advances in comput-
ing and communication devices.
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Tuple switching network diers from the generic “messaging-switching network” [43] in
the semantics of unit of communication. Application sericamiultiplexing also requires funda-
mentally diferent user data handling than traditional server-baseergeple space implemen-
tations ([16] and [17]). Like the packet switching prototiwht has delivered scalable stochastic
and reliable deterministic data services, the same can foected for tuple-based applications
using tuple switching network. Optimization of semantitwark multiplexing is also possible
by cross layer research since most HPC semantic networkemptemented using the TGP
protocol. Optimization can help to eliminate unnecessadyndancies.

Tuple switching network is a solution for a type of networkphgations that are suitable
for using data tuples. These include HPC applications antyrbasiness and E-commerce ap-
plications ([16] and [17]). The general methodology carm dle applied to solve sustainability
problems for other non-trivial network application typasich as online transaction process-
ing systems, extreme scale storage networks and extrerfee ssr@ice oriented systems [5].
In theory, if an architecture can be defined to apply sta@stmultiplexing to the correctly
formulated application unit of transmission, the proposezthodology can drastically reduce
communication-induced application-level uncertainties desirable feature for all large scale
mission critical applications. Like Johann Sebastian Bawte said, “.. (if) the keys are pressed
at the right times, the instrument will play itself.” Sinceost applications naturally gravitate
towards mission critical status, the concept of statibtizaltiplexing of semantic network can
be important for all future robust extreme scale compuytiogpmunication systems.
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Matrix Multiplication Master

#include <stdio.h>

#include <synergy.h>

double wall_clock();

double A[N][N],ituple_B[N][N], CINI[N];
char tpname[20];

double *ituple_A; /* [0] = grain size, [1] = values per rows ... */
double *otuple; /* [0] = grain size, [1] = values per rows ... */
main()

{

char host[128];

int i, j, k, received, ix, iy, tplength, status, G, T, R, P, res, tsd, x;
double t0, ti;

float F;

gethostname (host, sizeof (host));
t0 = wall_clock(); ix = 0;

// Open Tuple Space Objects
tsd = cnf_open("problem",0); res = cnf_open("result",0);

// Retrive command line arguments
G = cnf_getf(); P = cnf_getP(); // Granularity and P
if (G > N/2) { // Prevent over chunking
printf("Chunk size too large (Max: %d)\n",(int) N/2); exit (1); }

// Create test data

tplength = (1+N*N)*sizeof (double);

for (i = 0; i < N; i++) for (j = 0; j < N; j++) {
ituple_B[i][j] = (double) i * j;
A[i][j] = (double) i * j;}

// Insert Matrix B
sprintf (tpname, "B%d\0",0);
status = cnf_tsput(tsd, tpname, (double *)ituple_B, tplength);
// Insert Matrix A in groups
tplength = (1+ G*N) * sizeof (double);
if ((ituple_A = (double *)malloc(tplength)) == NULL) exit(1)
R =N;
while (R > 0) {
if (R <G) G =R;
R =R -G ; ituple A[0] = G;
for (x = 0; x < G; x++) for (j = 0; j < N; j++)
ituple_A[x*N+j+1] = Alix+x][j];
sprintf (tpname, "A%d\0",ix);
status = cnf_tsput(tsd, tpname, ituple_A, tplength);
ix += G; }

// Wait for results
received = i = 0;
tplength = (1+N*N)*sizeof (double);
if ((otuple = (double *)malloc(tplength)) == NULL) exit(1);
while (received < N) {
strcpy (tpname, "*") ;
tplength = cnf_tsget(res, tpname, otuple, 0);
G = (int) otuple[0];
ix = atoi(tpname);
iy = 1;
// Assemble results in C
for (i= 0; i < G; i++) {
received ++;
for (j=0; j < N; j++) Clix][j] = otuple[iy++];
ix ++; 3}
free(otuple);
// Send the termination
tplength = sizeof (double);
if ((ituple_A = (double *)malloc(tplength)) == NULL) exit(1);
ituple_A[0] = -1;
sprintf (tpname, "A%d\O",N*N);
status = cnf_tsput(tsd, tpname, ituple_A, tplength);
t1 = wall_clock() - t0;
cnf_term();

Figure A.12: MatrixMaster.c for Synergy
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/

Matrix multiplication worker program

#include <stdio.h>
#include <synergy.h>
char tpname[20];

double
double
double
double
double

main()

{

ituple_B[N][N];

*ituple_A; /x [0] = grain size, [1] = values per rows ... */
*otuple; /x [0] = grain size, [1] = values per rows ... */

ita[N/2] [N];
ott [N/2] [N];

int G, tsd, res, i, j, k;
int ix, ia, ib, tplength;

// Open Tuple Space Objects
tsd = cnf_open("problem",0);

res

= cnf_open("result",0);

// Ready to retrive Matrix B
strcpy (tpname, "Bx") ;

status = cnf_tsread(tsd, tpname, (double *)ituple_B, 0);
tplength = (1+(int)N*N/2)*sizeof (double);

if ((ituple_A = (double *)malloc(tplength)) == NULL) exit(-1);
while (1)

{

strcpy(tpname,"A*");

tplength = cnf_tsget(tsd, tpname, ituple_A, 0);

ix = atoi(&tpname[1]);

if (tplength > 0) { // normal receive
G = (int) ituple_A[0];
// check for termination
if (G == -1) { // Send back so others can terminate
status = cnf_tsput(tsd, tpname, ituple_A, tplength);

cnf_term();
return;

¥

// Translate the A group
for (i = 0; i < Gj i++)
for (j = 0; j < N; j++) {
italil[j] = ituple_A[ixN+j+1];

ott[il[j] = 0;
¥

// Initialize matrix C

// Dig (with optimized nesting order: (i,k,j))
if ((otuple = (double *)malloc(tplength)) == NULL) exit(-1);
otuple[0] = ituple A[0];
for (i =0; i < G; i++)
for (k =0; k < N; k++)
for (j =0; j < N; j++)
ott[i1[j1 = ott[il[j] + italil[k] * ituple_B[k][jl;
// Assemble result tuple
for (i = 0; i < G; i++)
for (j = 0; j < Nj j++)

otuple [i*N+j+1]
// Send result

= ott[i]l [j];

sprintf (tpname,"%d\0",ix) ;
cnf_tsput(res, tpname, otuple, tplength);

free(otuple);

} else cnf_term(); // Done

Figure A.13: MatrixWorker.c for Synergy (with CPU kernel)
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/
* Matrix Multiplication Program
*
* Revised by: JYS

/
#include <stdio.h>
#include "mpi.h"
// JYS: NRA, NCA and NCB are defined at compile time
#define MASTER O /* taskid of first task x/
#define FROM_MASTER 1 /* setting a message type */
#define FROM_WORKER 2 /* setting a message type */
MPI_Status status;
double a[NRAJ[NCA], /* matrix A to be multiplied */
b[NCA] [NCB], /* matrix B to be multiplied */
c[NRA] [NCB] ; /* result matrix C */
main(int argc, char **argv)
{
int numtasks,/* number of tasks in partition */
taskid, /* a task identifier */
numworkers,/* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
nbytes, /* number of bytes in message */
mtype, /* message type */
intsize,/* size of an integer in bytes */
dbsize, /* size of a double float in bytes */
rous, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine rows sent to each worker */
i, j, k,/* misc */
count;

struct timeval start, stop;
intsize = sizeof(int); dbsize = sizeof (double);

MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks); numworkers = numtasks-1;

/ master /
if (taskid == MASTER) {

printf ("Number of worker tasks = %d\n",numworkers);

for (i=0; i<NRA; i++) for (j=0; j<NCA; j++) alil[jl= i+j;

for (i=0; i<NCA; i++) for (j=0; j<NCB; j++) b[il[jl= i*j;

gettimeofday (&start, 0);

/* send matrix data to the worker tasks */

averow = NRA/numworkers; extra = NRA%numworkers;

offset = 0;

mtype = FROM_MASTER;

for (dest=1; dest<=numworkers; dest++) {
rows = (dest <= extra) 7 averow+l : averow;
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD) ;
count = rows*NCA;
MPI_Send(&a[offset] [0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
count = NCANCB;
MPI_Send (&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
offset = offset + rows;}

/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++) {
source = ij;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCB;
MPI_Recv(&c[offset] [0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);}
gettimeofday (&stop, 0);
} /* end of master section */

Figure A.14: Matrix Master for OpenMPI
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/ worker (slave) /
if (taskid > MASTER) {
mtype = FROM_MASTER;
source = MASTER;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status)
MPT_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
count = rows*NCA;
MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);
count = NCA*NCB;
MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);
// JYS: Added Initialization
for (i=0; i<NCB; i++}
for (j=0; j<rows, j++)

c[il[j1 = 0.0;
// JYS: Revised for optimized locality
for (k=0; k<NCB; k++)

for (i=0; i<rows; i++) {
// JYS: Removed for better locality: c[il[k] = 0.0;
for (j=0; j<NCA; j++)
clil k] = c[il[k] + alil[j] * b[jI1[k];

¥

//mtype = FROM_WORKER;
//MPI_Send(foffset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&offset, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD);
//MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD) ;
MPI_Send(&rows, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD) ;
//MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, FROM_WORKER, MPI_COMM_WORLD) ;
} /% end of worker */
MPI_Finalize();

} /* of main */

Figure A.15: Matrix Worker for OpenMPI (with CPU kernel)
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